Wavelets for CGM Denoising - Ecole Centrale de Nantes
Poster De Conférence Année : 2016

Wavelets for CGM Denoising

Résumé

Continuous Glucose Monitoring(CGM) devices allow sensor augmented pump therapy for type-1 diabetic patients. They are also useful for physicians to analyze nycthemeral glycemic profile and glucose variability. Noise, deviations, loss of sensitivity and spikes are common sources of error in CGM readings. An off-line wavelet algorithm has been developed to denoise the CGM signal.A typical CGM noise was added to a simulated blood glucose concentration.The objective is to maximize the signal to noise ratio.The Haar wavelet basis has been selected. The chosen scale J of decomposition gives a sequence of scale coefficients which contains an approximation of the signal at the resolution scale J, and a family of detail coefficients dj, 1≤ j ≤ J. Optimal scale of decomposition and threshold levels are computed.CGM data from 16 type-1 diabetic patients were used for this study. The optimal threshold levels were used to denoise the CGM signal off-line. The results showed that noise, deviations, loss of sensitivity and spikes were removed from the signal ; likely pikes and nadirs were not damped ; the algorithm dealt with loss of signal.This algorithm can provide a pre-processing tool for model fitting and allows an accurate reading of CGM to facilitate analysis by the physicians.

Mots clés

Fichier principal
Vignette du fichier
Magdelaine_ATTD2016_CGM.pdf (360.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01264662 , version 1 (28-11-2024)

Licence

Identifiants

  • HAL Id : hal-01264662 , version 1

Citer

Nicolas Magdelaine, Lucy Chaillous, Isabelle Guilhem, Jean-Yves Poirier, Michel Krempf, et al.. Wavelets for CGM Denoising. ATTD 2016; 9th International Conference on Advanced Technologies & Treatments of Diabetes, Feb 2016, Milano, Italy. ⟨hal-01264662⟩
221 Consultations
0 Téléchargements

Partager

More