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Abstract. This paper encompasses our first efforts towards the numerical simulation of friction stir welding by employing a 
Lagrangian approach. To this end, we have employed a meshless method, namely the Natural Element Method (NEM). Fric­
tion Stir welding is a welding process where the union between the work pieces is achieved through the extremely high defor­
mation imposed by a rotating pin, which moves between the two pieces. This extremely high strain is the main responsible of 
the difficulties associated with the numerical simulation of this forming process. Eulerian and Arbitrary Lagrangian-Eulerian 
(ALE) frameworks encounter difficulties in some aspects of the simulation. For instance, these approaches need additional 
techniques for the description of the boundary between materials, such as level sets, boundary markers or similar. In this 
paper we address the issue of employing a Lagrangian framework, which adequately describes the evolution in time of the 
interphase. The meshless character of the technique also ensures that no degeneracy on the accuracy is obtained due to mesh 
distortion. Some examples are presented that show the potential of the technique in simulating such a process. 

Keywords: Natural Element Method, Friction Stir Welding, meshless. 

INTRODUCTION 

Friction stir welding (FSW) is a process that, although 
in its development stage, has been successfully used to 
join pieces of materials with poor weldability. Briefly 
speaking, it achieves welding of the pieces by employ­
ing a rotating ping that provoques both extremely high 
plastic deformation and also a high heat generation. It is 
schematically represented in Fig. 1. 
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Figure 1. Schematic representation of the FSW process. 

In FSW, two pieces of sheet or thin plate are joined 
by inserting a specially designed rotating pin into the 
adjoining edges of the sheets to be welded and then 
moving it all along the seam. At first, the sheets or plates 
are abutted along edge to be welded and the rotating pin 
is sunken into the sheets/plates until the tool shoulder is 
in full contact with the sheets or plates surface. Once the 
pin is completely inserted, it is moved with a small nuting 
angle in the welding direction. Due to the advancing 
and rotating effect of the pin and shoulder of the tool 

along the seam, an advancing side and a retreating side 
are formed and the softened and heated material flows 
around the pin to its backside where the material is 
consolidated to create a high-quality, solid-state weld. 

In this papers we focus on the numerical simulation of 
such a process, rather than the experimental characteri­
zation. From the numerical point of view, such a process 
presents several challenging difficulties. First of all, the 
extremely large deformation present during the process, 
although very localized in a more or less region around 
the pin, always introduced numerical problems. Second, 
there is a strong coupling between these large deforma­
tion and heat generation, that in tum affects the behavior 
of the material. 

Up to our knowledge, few numerical attempts have 
been made in order to simulate this process. In [4] a FE­
based Lagrangian approach with intensive remeshing is 
employed. Similar approaches have been employed in 
[2] and [3]. Remeshing, however, is well-known as a 
potential source of numerical diffusion in the results. 

In this paper we employ a somewhat different ap­
proach based on the use of meshless methods. Mesh­
less methods allow for a Lagrangian description of the 
motion, while avoiding the need for remeshing. Thus, 
the nodes, that in our implementation transport all the 
variables linked to material's history, remain the same 
throughout the simulation. Mappings between old and 
new meshes are not necessary and hence the avoidance 
of numerical diffusion. 
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Figure 2. Delaunay triangulation and Voronoi diagram of a 
cloud of points. 

Among the many meshless methods available nowa­
days, we have chosen the Natural Element Method 
(NEM) [10] [6]. It possesses some noteworthy advan­
tages over other meshless methods that will be described 
shortly. 

THE NATURAL ELEMENT METHOD 

Consider a model composed by a cloud of points N = 
{ n1,n2, . . .  ,nm} c JR.d, for which there is a unique decom­
position of the space into regions such that each point 
within these regions is closer to the node to which the 
region is associated than to any other in the cloud. This 
kind of space decomposition is called a Voronoi diagram 
(also Dirichlet tessellation) of the cloud of points and 
each Voronoi cell is formally defined as (see figure 2): 

0={xElRd:d(x,x1)<d(x,xJ)VJ#I}, (1)

where d( ·, ·) is the Euclidean distance function. 
The dual structure of the Voronoi diagram is the De­

launay triangulation, obtained by connecting nodes that 
share a common (d - I)-dimensional facet. While the 
Voronoi structure is unique, the Delaunay triangulation 
is not, there being some so-called degenerate cases in 
which there are two or more possible Delaunay triangu­
lations (consider, for example, the case of triangulating a 
square in 2D, as depicted in Fig. 2 (right)). Another way 
to define the Delaunay triangulation of a set of nodes 
is by iINoking the empty circumcircle property, which 
means that no node of the cloud lies within the circle 
covering a Delaunay triangle. Two nodes sharing a facet 
of their Voronoi cell are called natural neighbours and 
hence the name of the technique. 

Equivalently, the second-order Voronoi diagram of the 
cloud is defined as 

I'JJ = {x E ]Rd: d(x,x1) < d(X,XJ) < d(x,xK) \I J #I #K}. 
(2) 

The most extended natural neighbour inteipolation 
method is the Sibson interpolant [8] [9]. Consider the 
introduction of the point x in the cloud of nodes. Due 
to this introduction, the Voronoi diagram will be altered, 
affecting the Voronoi cells of the natural neighbours of x. 

Sibson [8] defined the natural neighbour coordinates of a 
point x with respect to one of its neighbours I as the ratio
of the cell TJ that is transferred to Tx when adding x to the
initial cloud of points to the total volume of Tx. In other
words, if K ( x) and K1 ( x) are the Lebesgue measures of Tx 
and TxI respectively, the natural neighbour coordinates of
x with respect to the node I is defined as

(3) 

Figure 3. Definition of the Natural Neighbour coordinates of 
a point x. 

In Fig. 3 the shape function associated to node 1 at 
point x may be expressed as 

</Ji (x) = 
Aabfe

.
Aabcd 

(4) 

Sibson's interpolation scheme possesses the usual re­
producing properties for this class of problems, i.e., veri­
fies the partition of unity property (constant consistency), 
linear consistency (and therefore are suitable for the so­
lution of second-order PDE). Other interesting properties 
such as the Kronecker delta property [10] and linear in­
terpolation on the boundary [5] [11] are also verified by 
the NEM. This is especially important for problems in­
volving friction or, in general, in which the compatibility 
along the boundary is important. 

This kind of interpolation scheme is then used in a 
Galerkin framework, exactly like in the finite element 
method. 

CONSTITUTIVE MODELLING 

FSW processes iINolve large deformation and high ve­
locities of the rotating pin that make the elastic strains 
to be negligible. Although an elastic recovery exists, it 
is obvious negligible as a first approximation. The ob­
vious advantage of this assumption is that the material 
can then be modelled as a non-newtonian (visco-plastic) 
fluid. This assumption is known as the flow formulation 
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in the forming processes community [13]. Thus, the es­
sential variables of the problem will be velocities and 
pressures, instead of displacements and pressures. 

The deviatoric stresses will be, under this assumption, 

s = 2µd, (5) 

being, as usual, 
(J = s- pi (6) 

where p = -tr( <J)/3 and I stands for the second-order
identity tensor. Obviously, in the most general case, the 
parameterµ will depend on both the level of strain (and 
hence the non-linear character of the behavior) and the 
temperature. To derive the expression of the parameter 

µ it is a common practice to write the strain rate tensor 
as emerging from a visco-plastic potential. Following 
Perzyna [7] 

dvp - . dY(<J,q) - r d<J , (7) 

where Y is the viscoplastic potential -usually coincident
with the plastic criterion as has been considered here-, 
r is a scalar function given by 

i'= (g(Y(;,q))) with (
x

) = x� lx l , (8) 

(g) is a monotonic function that takes zero value only
if Y (CJ, q) ::; 0, 17 is a positive parameter often called
viscosity and q represents the hardening parameters. In
what follows we will avoid the use of the vp superscript 
to indicate viscoplastic if there is no risk of confusion. 

For metals, there exist well-defined plastic yield rules 
and for aluminium it is a common practice to employ a 
von Mises criterion: 

Y( CJ, q) = O'(s) - <Jy(d, T), (9)

where O' = � = VJJ2 represents the effective stress

and <Jy represents the uniaxial yield stress. d is the only
internal variable in this model and is sometimes called 
effective strain rate: 

(10) 

We have considered a yield stress given by the expres-
sion: 

(11) 

where K = 2.69£10, A = -3.3155, B = 0.1324 and C is
usually taken as 0.0192. In this work we have neglected 
the influence of strain, thus taking C = 0 instead. This 
law has been employed in previous works on this topic, 
see [2]. 

If we combine now the general form of the strain rate 
tensor given in Eq. (7), with Eq. (9), we arrive to 

d=·� 
r 20'

. (12) 

It is immediate now, by combining Eq. (10) and the def­
inition of effective stress, O', to prove that r is precisely 
the effective strain rate: 

-
. 

� 
d=�y2s:s=Y. (13)

On the other hand, and by following the Perzyna-like 
model employed in Eqs. (7) and (8) and taking g(f) = f,
we arrive to a relationship between equivalent stress and 
equivalent strain rate: 

that, introduced in Eq. (12), accounting Eq. (13), gives 
the following visco-plastic constitutive equation: 

(15) 

Note that, depending on the 17 value, the return to the 
yield surface is done with different velocity. Since it 
is common to describe aluminium behaviour as rigid­
plastic (rather than viscoplastic) we employ null viscos­
ity 17, so as to enforce Y = O' - <Jy = 0, leading to 

2<Jy s =-=-d.
3d (16) 

Finally, the constitutive equation, accounting the incom­
pressibility of plastic flow results: 

CJ= 2µd- pi, withµ= 
CJ�. 
3d 

Governing equations 

(17) 

We consider the balance of momentum equations, 
without inertia and mass terms for the plates being 
welded -it is obviously not the case for the pin, which is 
considered as perfectly rigid as a first approximation-

Y'. (J = 0, (18) 

and the assumed incompressibility of a von Mises-like 
flow: 

Y'. v = 0, (19) 

where v represents the velocity field. The stress-strain 
rate relationship is given by Eq. (16). Velocities are in­
terpolated by means of the functions 3, while pressures 
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are considered constant over the whole Voronoi cell as­
sociated to each node. 

This rigid-plastic material is coupled with the follow­
ing heat transfer equations: 

V(k'VT) + r - (pcpT) = o (20)

where k denotes the thermal conductivity, r the heat
generation rate, p the specific density and cp the specific
heat of the metal. The rate of heat generation in the 
aluminium billet due to plastic deformation is given by 

r=f3cr:d (21) 

where f3 represents the fraction of mechanical energy
transformed to heat and is assumed to be 0.9 [12]. 

The coupling has been made through a block-iterative 
semi-implicit method, together with a fixed-point algo­
rithm to treat the non-linear coupling. This strategy has 
also been employed successfully in previous works of the 
authors [ l ]. 

NUMERICAL RESULTS 

We consider here a very simplified two-dimensional, 
plane stress, model of the union of two plates. The model 
is composed by 240 nodes whose Delaunay triangula­
tion is re-computed at each time-step. This is very fast 
process, which actually consumes only a few time, if 
compared with the equilibrium iterations. The pin is 
assumed to rotate at 1000 rev/ min and to advance at 
Imm/ s. Despite that the usual friction coefficient be­
tween the pin and the sheet has been established to be 
around 0.5 (0. 46 in [2]) we have considered here perfect 
adhesion between them. This will overestimate the strain 
produced by the pin rotation. The time increment chosen 
was 10-4 seconds.

In Figs. 4-7 the evolution of the temperature is shown 
at different time steps. In Figs. 8-11, respectively, the 
equivalent strain rate is depicted. In all cases results show 
an overall good qualitative agreement with those in [2], 
performed by Finite Element simulation. 

However, the most important advantage of the pre­
sented technique is the possibility of tracking the ma­
terials particles throughout the process. We have consid­
ered two plates of different materials. In Fig. 12 the ini­
tial configuration of the nodes is depicted. In it, it can be 
shown that nodes of each plates have been labelled, by 
painting them in blue and red, respectively. 

The simulation has been run for approximately 4000 
time steps. Configuration after 4000 time steps is shown 
inFig. 13. 

This tracking can be performed without remeshing de­
spite the high level of distortion of the resulting triangu­
lation because triangles do not constitute the support of 

Figure 4. Evolution of the temperature field during the be­
ginning of the rotation. lOth time step. 

Figure 5. Evolution of the temperature field during the be­
ginning of the rotation. 50th time step. 

x 

Figure 6. Evolution of the temperature field during the be­
ginning of the rotation. 70th time step. 

NEM shape functions. In Fig. 14 the resulting triangu­
lation at the 4000th time step is shown. In this way, the 
numerical diffusion provoked by continuous remeshing 
is avoided. In addition, if some kind of nodal integration 
is performed, all history variables can be linked to the 
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Figure 7. Evolution of the temperature field during the be­
ginning of the rotation. 90th time step. 

x 

Figure 8. Evolution of the equivalent strain rate during the 
beginning of the rotation. lOth time step. 

• I 
=.. 

x 

Figure 9. Evolution of the equivalent strain rate during the 
beginning of the rotation. 50th time step. 

nodes, thus avoiding any projection procedures. 

• 

• i 
=• 

x 

Figure 10. Evolution of the equivalent strain rate during the 
beginning of the rotation. 70th time step. 

x 

Figure 11. Evolution of the equivalent strain rate during the 
beginning of the rotation. 90th time step. 

CONCLUSIONS 

In this paper we have presented the results of the first 
attempt -up to our knowledge- of applying mesh­
less methods to the simulation of Friction Stir Welding 
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Figure 12. Initial configuration of the simulation with two 
materials. 
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Figure 13. Evolution of the phases through the welding 
process. 4000th time step 

x 

Figure 14. Delaunay triangulation at the 4000th time step of 
the simulation. 

processes. The use of meshless methods (in particular, 
the Natural Element Method) was motivated trying to 
avoid extensive remeshing associated with the large de­
formations present in this kind of processes. 

Although the presented results can be considered as 
very preliminary, and further refinement of the models 
(especially relative to contact and friction) is needed, we 
can conclude that the Natural Element Method consti­
tutes a valuable tool for the simulation of such a com­
plex forming process. In particular, it has been shown 
how a large number of time steps (up to four thou­
sands) have been accomplished maintaining the initial 
set of nodes. Despite the high distortion of the triangu­
lation, good qualitative agreement with previous results 
has been found. 

Note, however, that the true interest of the proposed 
technique relies in its extension to three-dimensional 
settings, where the true complexity of the process should 
be analyzed. This constitutes the ongoing work of the 
authors. 
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