N
N

N

HAL

open science

Cyclostationary Analysis of Electromyographic Signals

Julien Roussel, Michel Haritopoulos, Philippe Ravier, Olivier Buttelli

» To cite this version:

Julien Roussel, Michel Haritopoulos, Philippe Ravier, Olivier Buttelli. Cyclostationary Analysis of
Electromyographic Signals. 21s European Signal Processing Conference, Jun 2013, Marrakech, Mo-

rocco. to be pubslished. hal-00839172

HAL Id: hal-00839172
https://hal.science/hal-00839172
Submitted on 12 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00839172
https://hal.archives-ouvertes.fr

CYCLOSTATIONARY ANALYSIS OF ELECTROMYOGRAPHIC
SIGNALS

J. Roussel, M. Haritopoulos P. Ravier, O. Buttelli
PRISME Laboratory PRISME Laboratory
21, rue de Loigny la Bataille 12, rue de Blois
28000, Chartres, France 45067, Orleans, France
ABSTRACT trinsic cyclostationarity of a single motor unit (MU) aatio

Mean firing rate estimation is an important step in eIeC_potential train (MUAPY) in the case of constant-force isbme

: . . N ric contraction and the link with the motor units firing rate
tromyographic (EMG) signals analysis. lts application fis o (FR). Indeed, Clamann [9] shows that under constant force
great interest for the conception and implementation ab-alg y '

rithms in various research domains, ranging from neuromusa—1nd isometric condition, the inter-spike intervals (ISt aot
. . . . » ranging constant but random (jitter). It makes the signal non-jcio
cular diseases diagnosis to biomechanics. The proposéd wo

is focused on the study of the intrinsic cyclostationaryppro énd thus, the spectrum density does not contain any relevant
erties of sinale motor )l:nit action otenti)(/':ll train. It mﬁ b information about the firing rates. We show in this work that
°S Of Sing o PO ' a cyclostationnary analysis can reveal this mean firingsrate
of direct interest to provide information about the neurgmu : g . . .
. o g Knowing the mean firing rates is of importance for design-
cular command. It is shown that individual motor unit firing

rates can be better estimated using second order cyctostati N9 MU_-decomposmon and/qr MU-source separatl.on meth-
. e . ods. Final applications of this work can be found in neuro-
ary analysis than traditional statistical tools, such asrieo ; . . S . .
. . muscular diseases diagnosis or in biomechanics studies.
transform. After a brief state-of-the-art on cyclostation
analysis of EMG signals, the basic concepts and measures of
cyclostationarity are presented. Follows a presentatidheo 2. CYCLOSTATIONARY ANALYSIS
EMG model. Results after application of the cyclostatignar
analysis tools for simulated and real data are provided. nexA cyclostationary (CS) signal is referred to a time-variaia-
A discussion on the obtained results concludes this work. cess with periodic statistical properties [10]. More speci
ically, a wide-sense first order CS signal shows a periodic
instantaneous meann,(t) = m,(t + 1), while a second
order CS (periodically correlated process) shows a periodi
auto-correlation functiont’,., (¢,7) = T'y, (¢t + T, 7), where
1. INTRODUCTION I'.. (¢, ) stands for the auto-correlation functioruoét time-
locationt and time-lagr. The two-dimensional Fourier trans-
Neuromuscular functional unit is defined by the MU as aform alongt andr of the auto-correlation function provides

single functional entity [1]. This unit consists of an  the cyclic spectral density (CSD),.. (£, a):
motoneuron in the spinal cord and the muscle fibers it in-

nervates. Muscular contraction is regulated by two mecha-
nisms: the number and the firing frequency modulation of Suw (fra) = // Ty (t,7) e 2Tl g (1)
MUs [2]. Hence, the assessment of the mean firing rate is
necessary to provide information about the neuromuscular
command. Some studies had referred to the cyclostatignarit
to investigate the neuromuscular activity without studyin
this property. Must of them refer to the cyclostationarity i
the case of cyclic contractions [3], [4], [5], [6], [7], [8].but,
at the best of our knowledge, the cyclostationarity prgpert
has never been investigated for the electromyographi@kign
(EMG) in the literature. @ «

The aim of this study is to analyse and identify the in- Sea (fra) =E {X (f o 5) X (f + 2)] @

Index Terms— Electromyography, Cyclostationarity,
Degree of Cyclostationarity, Motor Unit, Firing Rate

t,TeR

with a = 7 Vn € N. The CSD can be efficiently esti-
mated using the averaged cyclic periodogram technique [11]
The CSD of eq.1 can be rewritten as a spectral correlation
betweenX (f + ¢) andX (f — %) [12]:



In this work, we are interested in highlighting the pres-
ence of cyclostationary components in EMG data. Basically, L
this can be done by analysing the CSD distribution thatis the Sui: (f,@) = 7522, (f, ) [®i(a) = Sa,4,(f, )]
oretically non zero whenever # 0. We are also interested X > nez 0o — %) 8)
in estimating cyclic frequencies values that may be preisent '
the data. So we focus on marginal distributions of CSD as a whereSs, ¢, (f,a) = ®;(f+5)P:(f — §), Se,e, (f, ) =

function of the cyclic frequency. Xi(f + 9X,(f — 9) with X;(f) = FT [2:(t)], ®:(f) be-
A first measure of cyclostationarity is the integrated CSI:lng the Pourier transform of the probability densitymgfand

over spectral frequency. Randallet al. [13] showed thatthis g »(f) being the spectrum density of noise. The case 0
measure can be easily computed using the expectation valgg,es us the spectrum density gf

of the Fourier transform of the squared magnitude: pft),
with 2, (t) being the Hilbert transform of (¢):

Sy (£.0) = 75 (0 110D @)
Mar (@) = [ Suw (Fi0)df =B [FTan(0)] @)
According to the author®; (/) is a low-pass filter where
The Hilbert transform magnitude is often used to extraccut-off frequency at-3dB is approximately equal o =
the envelope of any signal so that this computation procaedur&7 and using eq.5 we gefy = ;g57g _2+21 3%10-3
of M, (o) will be referred to envelope analysis in the fol- For a firing rate varying betweeft/ » and25 = we obtain a
lowing of the paper. —3dB cut-off frequency betweeh64H z and34.35H z.
Another measure of cyclostationarity is the power- nor- It can be deduced thaf,,,, (f,0) ~ +S5:..,(f,0) be-
malised version of the integrated CSD, also named cyclostgause the spectrum density of MUAP wavefotin., (f,0)

tionary degree [14]: is negligible for allf < 25Hz. This assumption can be ex-
tended to the CSD case, sowe hé\@@_i (f,0)Sz;a; (f_, a) ~
DCS,. () = ]\Zéz ((C())é)) 4) ]E)Oﬁ(r)l\?vsu:smg eg.3 the envelop analysigyptan be written as
3. MODELISATION
Each MUAPty; (t) is simulated using a spike train convolved i (kez;s ‘T ) (@) Moz, (o) (10)

with the MUAP template, namely; (¢), wherei stands for

the MUAP index ( S [17N], with N the number of active 4. SIMULATION STUDY
MUSs). In [9], ISI is defined as a Gaussian process with mean

firing period7; = FR;~' and standard deviatios;, com- 4.1 Simulation Model

puted using the following relation for tH@ceps brachii: ) ) .
Synthetic EMG signals are generated using an EMG MUAP

s;=091-FR;2+4-1073 (5) library template. Fig.1 shows a time plot of this signal. iro

_ _ now on, in order to clearly identify their contributionst le
expressed in seconds. Hence, the MUARt) is modeledas v — 3 pe their number with firing rates, expressed in Hz:

follows: FR; = [10,12,15]Vi € {1,2,3}.
oo Signals are computed using various jitter levels as a rate of
yi () = @i (£) * Z S(t—nT,+7) (6) the Clamann’s law (eq.5)t0%s; , 50%s; and100%s; with-

out noise;100%s; with 10dB noise..

it

wheren (t) is an i.i.d. Gaussian noise with its vari- 0 01 0.2 03 0.4 0.5
ance. Time (s)

In [13], the authors give the expression of the cyclic spec-
trum density in a more complicated model than our modeFig. 1. Representation of the simulated EMG signal with
(eq.6) and its adaptation results, i.e. without amplitudelm three active MUAPs antldd B Gaussian noise added.
ulation, in the following expression:

n=—oo

with 7; ~ A(0, s;2). Finally, the full EMG signal writes
as a sum of all active MU contributions:

10

EMG (t Z yi ( (7)

Amplitude (mV)
o




4.2. Envelope Analysis

: . . a 0.4
The envelope analysid/,, («) of the previously simulated ) <
MUAPt using eq.7, is computed without noise and with a > 02 J J A L
10dB additive noise. Fig.2 and Fig.3 show plots of the 0 st . A
Fourier transform and the Fourier transform of the envelop, 0 10 20 30 40
respectively. We limit the frequency axis40H z in order to
view the mean firing frequencies and their first harmonics. b) < 02
Z 01
-3
e x 10 0
a) N1 3 0 10 20 30 40
2 05 lL J ] c) 0.2
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-1
E At
0 10 20 30 40 Fig. 3. DCS of the same signal with a) 10% b) 50% c) 100%
X 107 of Clamann’s law in the unnoisy case and d) 100% of Cla-
N . . . .
9 2 mann’s law with10 dB Gaussian noise added - Normalised
21 Amplitude (N.A.) y-axis.
Q.
o
0 10 20 30 40 Clamann’s law, r tivel t-off fr ncy val r
Frequency (H2) amann’s law, respectively (cut-off frequency valuesreo

sponding to the highest 15 Hz MUAPt frequency). This also
explains the decreasing of power byt concerning the fun-
Fig. 2. Fourier transform of the simulated signal with a) 10%damental frequencies.

b) 50% c) 100% of Clamann’s law in the unnoisy case and d)

0 , . ) X
100% of Clamann’s law with0 d B Gaussian noise added. 5 REAL EMG STUDY

In the noiseless case, Fourier transform of Fig.2(a-c) ex- .
hibits only a small peak at5H » corresponding to the firing 5.1. EMG Signals and protocols
frequency of the third MU, but with a0dB noisy signal all  Real intramuscular EMG (iIEMG) signals were provided by
significant peaks in the Fourier transform are buried in@ois EMGLab [15]. One signal is selected with constant percent-
as shown in Fig.2d. We observe that EMG spectra are enesge of maximum voluntary contractiad%2M V C and under
getical for frequencies above 20 Hz. This is verified for allisometric condition, recorded using bipolar fine-wire elec
the graphs in Fig.2a-d. As a consequence, the harmonics ai@des on the righbiceps brachii muscle. A dynamo-meter
found to be predominant for low percentage values of the Clayas used to control the muscle force that ensured a low ripple
mann’s law (2a).Increasing the values will make the peri- during10s of measurement. A5s rest before each measure-
odicity disappear and the harmonics vanish. On the contrarynent and a two minutes break between two different force
the envelop analysis, in Fig.3, improves the low frequencyevels are realised in order to avoid muscle fatigue effects
identification and one can easily identify on noiseless &gur
the contributions of the three motor units. This is esséntia
due to the low pass filter effect of the jitter functions (e).1
annihilating the high frequency parts of the spectrum. Fronintramuscular EMG signals can be decomposed using pattern
Fig.3a to c, the increasing of jitter rates decreases the hamatching methods in order to retrieve their single mototsuni
monic firing rates. This is due to the3d B cut-off frequen- components. The R00701 signal was manually decomposed
cies of the filter,®;(«) in eq.10, that decrease from 230 Hz using the EMGLab(V1.03) software [16] and firing patterns
to 46 Hz and 23 Hz in the case of 10%, 50% and 100% ofvere statistically analyzed in order to assess the meag firin

5.2. Decomposition Statistical Analysis



rate and jitter standard deviation. Figure 4 shows the first h

dred milliseconds of the EMG signal, with its MUAP mark- < 02
Z 01
ers.
0 1 n
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v Cyclic Frequency (Hz)
£ 1000
%) 4 2 5 3 ] ) . . _
2 o Fig. 6. Degree of cyclostationarity of the R0O0701 IEMG sig-
g nal.
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Fig. 4. Representation of the real IEMG signal named R00701 <

0.
(10%MVC). = 0B
0.1
The decomposition of the RO0701 signal reveals five ac- 0.05
tive motor units, identified by their number on Fig.4. Table 10 105 11 115 12
1 shows, for each detected MU (corresponding number re- Cyclic Frequency (Hz)

ported in column 1), the mean ISl value, the standard devi-

ation of the 1SI sequence and the mean firing rate in colum&ig_ 7. DCS of the R00701 iEMG signal -
two, three and four respectively. A minimum of hundred re-c
alizations for each MU ensured a correct estimation of both
mean and standard deviation values.

Zoom. The mean
R values of table 1 are reported on the graph.

MU Ty.(ms) or, (ms) Fp(Hz) Fig.6 contains spectral lines with a first amount of data
1 39.95 ’é 30 11.30 concentrated around the frequency range froodz to
2 93'25 8.28 10.81 12.5Hz. The mean firing frequency values reported in ta-
3 85'24 9.36 11'87 ble 1 are contained within the same frequency range excepted
’ ’ ’ for the last MU located at3.36 H . A second amount of data
! o191 8.33 10.97 from 20 H z to 26 H z corresponds to the first harmonics range
5 75.42 6.48 13.36 P ge,

and finally, a third one corresponds to the second harmonics

Table 1 Statistical analysis of RO0701 signal. range. It can be observed that, contrary to the first frequenc
range froml0H z to 12.5H z, spectral lines are clearly spread
The mean firing rates were computed using the invers@Ver their first .and second harmonics frequency range. Fig.7
ISI values: Fy, = % Z;\il ﬁ where M is the number of IS &Z0om of Fig.6 around frequency rar{ge, 12.5] Hz and
MUAP 0CCUITences. i the expected frequenpy vglues are represented with laeled
rows. One observes in Fig.4 that MUAPs 4 and 5 have lower
amplitude than the others and that explains the difficulty to
find these harmonics in the DCS.
The Fourier transform and the DCS (eq.4), are computed and
plotted on Fig.5 and Fig.6 respectively. 6. DISCUSSION

5.3. Envelope Analysis

2 . . . In[17] itis shown that the power spectrum of the rectified sig
nal, which is an approximation of the envelop, enhances the
low-frequency peaks, but there is no theoretical justifbcet
on this. Using the single spike train model of eq.6, the atho
of [13] show that the signal is not periodic, but second-orde
Frequency (Hz) periodic due to the jitter. That means the power spectrum den
sity (eqg. 9) does not reveal any periodicity hence the need of
Fig. 5. Fourier transform of the RO0701 iEMG signal. a second order anlaysis tool such as CSD or envelop analysis.
They show that the CSD (eq.8) gives a line spectrum along
Similarly to the analysis in the simulation case, the firingcyclic frequencies at the mean MU firing rates and, hence, it
frequency peaks are buried in noise in the Fourier transforrhecomes a useful tool in order to reveal the second order peri
(Fig.5) and does not reveal the firing rates. odicities. Finally, they prove that the envelop analysieqgsal

Amp. (V¥/Hz)




to the integration of the CSD along the spectrum frequencies [6] M. Knaflitz and Paolo Bonato, “Time-frequency meth-
hence, ideally, the envelop analysis exhibits a spectram i
at the mean firing rates. In this work [13], it has been also
theoretically proven, in eg.10, that the random jitter actly

as a low-pass filter in the envelop analysis.

In practice, probably due to the highly stochastic nature [7]
of data, one observes a degradation of the line spectrum and
thus, a lack of precision of the estimated mean firing rate, as
one can see in Fig.3 and Fig.7. Furthermore, since the jitter

acts as a set of low-pass filters which cut-off frequenci#s fa

in the same frequencies as the mean firing rates, the harmonic
magnitudes are strongly attenuated. Jitter has a low-pess f 8]
quency approximately equal to the mean firing rates which

strongly decreases the harmonics magnitude.

These limitations prevent a correct analysis of a high num-
ber of active MUs. At the time being, the method is effec- [9]

tive for analyzing a small number of active MUs, i.e., for low
MV level (aboutl0% MV C in the case of bipolar IEMG

signals).

traction.

As a conclusion, we showed in this paper that we were

able to retrieve individual firing rates, firstly, theoretliy,

by an envelope analysis based on an appropriate model of

MUAPt; secondly, by estimating the envelope on synthetic
data, when a small number of active MUs is considered;
thirdly, experimentally, by identifying FR values that \eer

previously measured on temporal data.
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