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ABSTRACT

Mean firing rate estimation is an important step in elec-
tromyographic (EMG) signals analysis. Its application is of
great interest for the conception and implementation of algo-
rithms in various research domains, ranging from neuromus-
cular diseases diagnosis to biomechanics. The proposed work
is focused on the study of the intrinsic cyclostationary prop-
erties of single motor unit action potential train. It must be
of direct interest to provide information about the neuromus-
cular command. It is shown that individual motor unit firing
rates can be better estimated using second order cyclostation-
ary analysis than traditional statistical tools, such as Fourier
transform. After a brief state-of-the-art on cyclostationary
analysis of EMG signals, the basic concepts and measures of
cyclostationarity are presented. Follows a presentation of the
EMG model. Results after application of the cyclostationary
analysis tools for simulated and real data are provided next.
A discussion on the obtained results concludes this work.

Index Terms— Electromyography, Cyclostationarity,
Degree of Cyclostationarity, Motor Unit, Firing Rate

1. INTRODUCTION

Neuromuscular functional unit is defined by the MU as a
single functional entity [1]. This unit consists of anα-
motoneuron in the spinal cord and the muscle fibers it in-
nervates. Muscular contraction is regulated by two mecha-
nisms: the number and the firing frequency modulation of
MUs [2]. Hence, the assessment of the mean firing rate is
necessary to provide information about the neuromuscular
command. Some studies had referred to the cyclostationarity
to investigate the neuromuscular activity without studying
this property. Must of them refer to the cyclostationarity in
the case of cyclic contractions [3], [4], [5], [6], [7], [8]... but,
at the best of our knowledge, the cyclostationarity property
has never been investigated for the electromyographic signals
(EMG) in the literature.

The aim of this study is to analyse and identify the in-

trinsic cyclostationarity of a single motor unit (MU) action
potential train (MUAPt) in the case of constant-force isomet-
ric contraction and the link with the motor units firing rate
(FR). Indeed, Clamann [9] shows that under constant force
and isometric condition, the inter-spike intervals (ISI) are not
constant but random (jitter). It makes the signal non-periodic
and thus, the spectrum density does not contain any relevant
information about the firing rates. We show in this work that
a cyclostationnary analysis can reveal this mean firing rates.

Knowing the mean firing rates is of importance for design-
ing MU-decomposition and/or MU-source separation meth-
ods. Final applications of this work can be found in neuro-
muscular diseases diagnosis or in biomechanics studies.

2. CYCLOSTATIONARY ANALYSIS

A cyclostationary (CS) signal is referred to a time-variantpro-
cess with periodic statistical properties [10]. More specif-
ically, a wide-sense first order CS signal shows a periodic
instantaneous mean:mx(t) = mx(t + T ), while a second
order CS (periodically correlated process) shows a periodic
auto-correlation function:Γxx (t, τ) = Γxx (t+ T, τ), where
Γxx (t, τ) stands for the auto-correlation function ofx at time-
locationt and time-lagτ . The two-dimensional Fourier trans-
form alongt andτ of the auto-correlation function provides
the cyclic spectral density (CSD)Sxx (f, α):

Sxx (f, α) =

¨

t,τ∈R

Γxx (t, τ) e
−2iπ(fτ+αt)dtdτ (1)

with α = n
T
∀n ∈ N. The CSD can be efficiently esti-

mated using the averaged cyclic periodogram technique [11].
The CSD of eq.1 can be rewritten as a spectral correlation
betweenX
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[12]:
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In this work, we are interested in highlighting the pres-
ence of cyclostationary components in EMG data. Basically,
this can be done by analysing the CSD distribution that is the-
oretically non zero wheneverα 6= 0. We are also interested
in estimating cyclic frequencies values that may be presentin
the data. So we focus on marginal distributions of CSD as a
function of the cyclic frequencyα.

A first measure of cyclostationarity is the integrated CSD
over spectral frequencyf . Randallet al. [13] showed that this
measure can be easily computed using the expectation value
of the Fourier transform of the squared magnitude ofxh(t),
with xh(t) being the Hilbert transform ofx(t):

Mxx (α) =

ˆ

Sxx (f, α) df ≡ E
[

FT [|xh(t)|
2]
]

(3)

The Hilbert transform magnitude is often used to extract
the envelope of any signal so that this computation procedure
of Mxx (α) will be referred to envelope analysis in the fol-
lowing of the paper.

Another measure of cyclostationarity is the power- nor-
malised version of the integrated CSD, also named cyclosta-
tionary degree [14]:

DCSxx (α) =
Mxx (α)

Mxx (0)
(4)

3. MODELISATION

Each MUAPtyi (t) is simulated using a spike train convolved
with the MUAP template, namelyxi (t), wherei stands for
the MUAP index (i ∈ [1;N ], with N the number of active
MUs). In [9], ISI is defined as a Gaussian process with mean
firing periodTi = FRi

−1 and standard deviationsi com-
puted using the following relation for thebiceps brachii:

si = 0.91 · FRi
−2 + 4 · 10−3 (5)

expressed in seconds. Hence, the MUAPtyi(t) is modeled as
follows:

yi (t) = xi (t) ∗
+∞
∑

n=−∞

δ (t− nTi + τi) (6)

with τi ∼ N (0, si
2). Finally, the full EMG signal writes

as a sum of all active MU contributions:

EMG (t) =

N
∑

i=1

yi (t) + n(t) (7)

wheren (t) is an i.i.d. Gaussian noise withσ2
n its vari-

ance.
In [13], the authors give the expression of the cyclic spec-

trum density in a more complicated model than our model
(eq.6) and its adaptation results, i.e. without amplitude mod-
ulation, in the following expression:

Syiyi
(f, α) = 1

T
Sxixi

(f, α) [Φi(α)− SΦiΦi
(f, α)]

×
∑

k∈Z
δ(α− k

Ti
) (8)

whereSΦiΦi
(f, α) = Φi(f+

α
2 )Φi(f − α

2 ),Sxixi
(f, α) =

Xi(f + α
2 )Xi(f − α

2 ) with Xi(f) = FT [xi(t)], Φi(f) be-
ing the Fourier transform of the probability density ofτi and
Snn(f) being the spectrum density of noise. The caseα = 0
gives us the spectrum density ofyi:

Syiyi
(f, 0) =

1

Ti

Sxixi
(f, 0)

[

1− |Φi(f)|
2
]

(9)

According to the authors,Φi(f) is a low-pass filter where
cut-off frequency at−3dB is approximately equal tof0 =
0.187
si

and using eq.5 we getf0 = 1
4.86×FRi

−2+21.3×10−3 .
For a firing rate varying between5Hz and25Hz we obtain a
−3dB cut-off frequency between4.64Hz and34.35Hz.

It can be deduced thatSyiyi
(f, 0) ≈ 1

T
Sxixi

(f, 0) be-
cause the spectrum density of MUAP waveformSxixi

(f, 0)
is negligible for allf < 25Hz. This assumption can be ex-
tended to the CSD case, so we haveSΦiΦi

(f, α)Sxixi
(f, α) ≈

0 and using eq.3 the envelop analysis ofyi can be written as
follows:

Myiyi
(α) =

1

T

(

∑

k∈Z

δ(α−
k

Ti

)

)

Φi(α)Mxixi
(α) (10)

4. SIMULATION STUDY

4.1. Simulation Model

Synthetic EMG signals are generated using an EMG MUAP
library template. Fig.1 shows a time plot of this signal. From
now on, in order to clearly identify their contributions, let
N = 3 be their number with firing rates, expressed in Hz:
FRi = [10, 12, 15] ∀i ∈ {1, 2, 3}.

Signals are computed using various jitter levels as a rate of
the Clamann’s law (eq.5):10%si , 50%si and100%si with-
out noise;100%si with 10dB noise..
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Fig. 1. Representation of the simulated EMG signal with
three active MUAPs and10dB Gaussian noise added.



4.2. Envelope Analysis

The envelope analysisMxx (α) of the previously simulated
MUAPt using eq.7, is computed without noise and with a
10dB additive noise. Fig.2 and Fig.3 show plots of the
Fourier transform and the Fourier transform of the envelop,
respectively. We limit the frequency axis to40Hz in order to
view the mean firing frequencies and their first harmonics.
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Fig. 2. Fourier transform of the simulated signal with a) 10%
b) 50% c) 100% of Clamann’s law in the unnoisy case and d)
100% of Clamann’s law with10 dB Gaussian noise added.

In the noiseless case, Fourier transform of Fig.2(a-c) ex-
hibits only a small peak at15Hz corresponding to the firing
frequency of the third MU, but with a10dB noisy signal all
significant peaks in the Fourier transform are buried in noise
as shown in Fig.2d. We observe that EMG spectra are ener-
getical for frequencies above 20 Hz. This is verified for all
the graphs in Fig.2a-d. As a consequence, the harmonics are
found to be predominant for low percentage values of the Cla-
mann’s law (2a).Increasing theσi values will make the peri-
odicity disappear and the harmonics vanish. On the contrary,
the envelop analysis, in Fig.3, improves the low frequency
identification and one can easily identify on noiseless figures
the contributions of the three motor units. This is essentially
due to the low pass filter effect of the jitter functions (eq.10)
annihilating the high frequency parts of the spectrum. From
Fig.3a to c, the increasing of jitter rates decreases the har-
monic firing rates. This is due to the−3dB cut-off frequen-
cies of the filter,Φi(α) in eq.10, that decrease from 230 Hz
to 46 Hz and 23 Hz in the case of 10%, 50% and 100% of
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Fig. 3. DCS of the same signal with a) 10% b) 50% c) 100%
of Clamann’s law in the unnoisy case and d) 100% of Cla-
mann’s law with10 dB Gaussian noise added - Normalised
Amplitude (N.A.) y-axis.

Clamann’s law, respectively (cut-off frequency values corre-
sponding to the highest 15 Hz MUAPt frequency). This also
explains the decreasing of power by1.4 concerning the fun-
damental frequencies.

5. REAL EMG STUDY

5.1. EMG Signals and protocols

Real intramuscular EMG (iEMG) signals were provided by
EMGLab [15]. One signal is selected with constant percent-
age of maximum voluntary contraction10%MVC and under
isometric condition, recorded using bipolar fine-wire elec-
trodes on the rightbiceps brachii muscle. A dynamo-meter
was used to control the muscle force that ensured a low ripple
during10s of measurement. A15s rest before each measure-
ment and a two minutes break between two different force
levels are realised in order to avoid muscle fatigue effects.

5.2. Decomposition Statistical Analysis

Intramuscular EMG signals can be decomposed using pattern
matching methods in order to retrieve their single motor units
components. The R00701 signal was manually decomposed
using the EMGLab(V1.03) software [16] and firing patterns
were statistically analyzed in order to assess the mean firing



rate and jitter standard deviation. Figure 4 shows the first hun-
dred milliseconds of the EMG signal, with its MUAP mark-
ers.
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Fig. 4. Representation of the real iEMG signal named R00701
(10%MVC).

The decomposition of the R00701 signal reveals five ac-
tive motor units, identified by their number on Fig.4. Table
1 shows, for each detected MU (corresponding number re-
ported in column 1), the mean ISI value, the standard devi-
ation of the ISI sequence and the mean firing rate in column
two, three and four respectively. A minimum of hundred re-
alizations for each MU ensured a correct estimation of both
mean and standard deviation values.

MU Tfr(ms) σTfr
(ms) Ffr(Hz)

1 89.25 8.30 11.30
2 93.25 8.28 10.81
3 85.24 9.36 11.87
4 91.91 8.33 10.97
5 75.42 6.48 13.36

Table 1. Statistical analysis of R00701 signal.

The mean firing rates were computed using the inverse
ISI values:Ffr = 1

M

∑M

j=1
1

ISIj
whereM is the number of

MUAP occurrences.

5.3. Envelope Analysis

The Fourier transform and the DCS (eq.4), are computed and
plotted on Fig.5 and Fig.6 respectively.
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Fig. 5. Fourier transform of the R00701 iEMG signal.

Similarly to the analysis in the simulation case, the firing
frequency peaks are buried in noise in the Fourier transform
(Fig.5) and does not reveal the firing rates.
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Fig. 6. Degree of cyclostationarity of the R00701 iEMG sig-
nal.
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Fig. 7. DCS of the R00701 iEMG signal - Zoom. The mean
FR values of table 1 are reported on the graph.

Fig.6 contains spectral lines with a first amount of data
concentrated around the frequency range from10Hz to
12.5Hz. The mean firing frequency values reported in ta-
ble 1 are contained within the same frequency range excepted
for the last MU located at13.36Hz. A second amount of data
from 20Hz to 26Hz corresponds to the first harmonics range,
and finally, a third one corresponds to the second harmonics
range. It can be observed that, contrary to the first frequency
range from10Hz to 12.5Hz, spectral lines are clearly spread
over their first and second harmonics frequency range. Fig.7
is a zoom of Fig.6 around frequency range[10, 12.5]Hz and
the expected frequency values are represented with labeledar-
rows. One observes in Fig.4 that MUAPs 4 and 5 have lower
amplitude than the others and that explains the difficulty to
find these harmonics in the DCS.

6. DISCUSSION

In [17] it is shown that the power spectrum of the rectified sig-
nal, which is an approximation of the envelop, enhances the
low-frequency peaks, but there is no theoretical justifications
on this. Using the single spike train model of eq.6, the authors
of [13] show that the signal is not periodic, but second-order
periodic due to the jitter. That means the power spectrum den-
sity (eq. 9) does not reveal any periodicity hence the need of
a second order anlaysis tool such as CSD or envelop analysis.

They show that the CSD (eq.8) gives a line spectrum along
cyclic frequencies at the mean MU firing rates and, hence, it
becomes a useful tool in order to reveal the second order peri-
odicities. Finally, they prove that the envelop analysis isequal



to the integration of the CSD along the spectrum frequencies;
hence, ideally, the envelop analysis exhibits a spectrum line
at the mean firing rates. In this work [13], it has been also
theoretically proven, in eq.10, that the random jitter actsonly
as a low-pass filter in the envelop analysis.

In practice, probably due to the highly stochastic nature
of data, one observes a degradation of the line spectrum and
thus, a lack of precision of the estimated mean firing rate, as
one can see in Fig.3 and Fig.7. Furthermore, since the jitter
acts as a set of low-pass filters which cut-off frequencies fall
in the same frequencies as the mean firing rates, the harmonic
magnitudes are strongly attenuated. Jitter has a low-pass fre-
quency approximately equal to the mean firing rates which
strongly decreases the harmonics magnitude.

These limitations prevent a correct analysis of a high num-
ber of active MUs. At the time being, the method is effec-
tive for analyzing a small number of active MUs, i.e., for low
MVC level (about10%MVC in the case of bipolar iEMG
signals). Implementation of a more advanced approach is
necessary to identify MUs activity in a higher level of con-
traction.

As a conclusion, we showed in this paper that we were
able to retrieve individual firing rates, firstly, theoretically,
by an envelope analysis based on an appropriate model of
MUAPt; secondly, by estimating the envelope on synthetic
data, when a small number of active MUs is considered;
thirdly, experimentally, by identifying FR values that were
previously measured on temporal data.
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ine Marque, “Analysis of muscular fatigue during cyclic
dynamic movement,”EMBS Engineering in Medicine
and Biology Society, vol. 2007, pp. 1880–3, Jan. 2007.

[6] M. Knaflitz and Paolo Bonato, “Time-frequency meth-
ods applied to muscle fatigue assessment during dy-
namic contractions,”Journal of Electromyography and
Kinesiology, vol. 9, no. 5, pp. 337–50, Oct. 1999.

[7] J.S. Karlsson, N.̈Ostlund, B. Larsson, and B. Gerdle,
“An estimation of the influence of force decrease on the
mean power spectral frequency shift of the emg during
repetitive maximum dynamic knee extensions,”Journal
of Electromyography and Kinesiology, vol. 13, no. 5, pp.
461–468, Oct. 2003.

[8] E Serpedin, F Panduru, I Sari, and Georgios B. Gian-
nakis, “Bibliography on cyclostationarity,”Signal Pro-
cessing, vol. 85, no. 12, pp. 2233–2303, Dec. 2005.

[9] H. Peter Clamann, “Statistical analysis of motor unit
firing patterns in a human skeletal muscle,”Biophysical
journal, vol. 9, no. 10, pp. 1233–51, Oct. 1969.

[10] W. R. Bennett, “Statistics of regenerative digital trans-
mission,” The Bell System Technical Journal, vol. 1, pp.
1501–1542, 1958.

[11] Roger Boustany and Jérôme Antoni, “Cyclic spectral
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