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Abstract: This paper presents a comparison between two optimization methods for the energy
management of a parallel hybrid electric powertrain: convex programming and Pontryagin’s
Minimum Principle (PMP). The objective of this comparison is to validate the analytical
solution by comparing the results with the ones obtained on the original model with Dynamic
Programming (DP). Therefore, before its application, some necessary approximations and
convexification were made on the original nonlinear and non-convex model. The validation of
the simplified model was also carried out. In this paper, two cases are studied. In the first case,
the supervisory control considers only the torque split between the Internal Combustion Engine
(ICE) and the Electric Machine. In the second case, a binary decision ICE On/Off is included
in the optimization problem. In order to solve the problem of the binary decision, which makes
the problem non-convex, a analytical solution based on PMP is then proposed. The results show
that the analytical solution is close to the optimal solution given by DP.

Keywords: Energy Management Strategy, Hybrid Electric Vehicles (HEV), Convex
optimization, Pontryagin’s Maximum Principle (PMP), Engine On/Off.

1. INTRODUCTION

The transport sector accounts for 26% of global energy
consumption (Badin, 2013). This is the reason why, in
recent years, extensive research has been undertaken in
order to reduce energy consumption and pollution caused
by transportation. In this paper, we focus on one of the
solutions for achieving a near-term reduction of energy
consumption proposed by the automotive industry, which
is the use of Hybrid Electric Vehicles (HEVs). HEVs con-
sist of at least two power sources, an internal combustion
engine and one or more electric motors, as well as an
energy buffer, typically a battery.

This means that an energy management solution must
be found between power sources in the vehicle that min-
imizes fuel consumption. In simulation, optimal off-line
approaches are interesting for design and component sizing
purposes and real-time control strategy design. There are
many approaches to design an optimal energy manage-
ment strategy: deterministic Dynamic Programming (DP)
(Pérez et al., 2006; Debert et al., 2010), stochastic DP
(Johannesson et al., 2007), and Pontryagin’s Maximum
Principle (Serrao et al., 2009; Kim et al., 2011). While
being a globally optimal energy management, dynamic
programming is computationally expensive, which limits
its application to low-order systems (typically two states).
As far as PMP method is concerned, its inconvenient is the

sensitivity of the solution towards the boundary conditions
(Serrao et al., 2011).

Recently, convex optimization (Boyd and Vendenberghe,
2004; Grant and Boyd, 2013) has attracted attention in
the research field of energy management for HEVs. It is
seen as an alternative method for the optimization of the
power flows in HEVs due to its advantages, the most
important of which is that it is computationally more
efficient than DP or PMP. In Murgovski et al. (2013, 2012),
convex optimization was employed to dimension the HEV
powertrain especially the battery, whereas Hu et al. (2013)
used it for energy efficiency analysis. In this study, we
are interested in minimizing fuel consumption via convex
optimization, with the use of a engine On/Off functionality
to stop and start the engine during the driving cycle. This
functionality enables a further fuel consumption reduction.
Unfortunately, a binary variable for controlling the engine
On/Off state cannot be included in a convex formulation
as the set of integer numbers is not convex. To solve this
kind of optimization problems, also known as a mixed
integer problem, Murgovski et al. (2012) proposed that
integer and binary variables should be decided a priori
by heuristics. In Elbert et al. (2014), the optimal engine
On/Off strategy is computed analytically using the PMP
approach for a serial hybrid electric bus. In Nüesch et al.
(2014), the engine On/Off and gearshift strategies are
given by a combination of DP and PMP.



This paper is organized as follows. In section 2, the vehicle
model is presented. In section 3, convex modeling and
optimization are proposed for a first study case where
the engine is running during the driving cycle which is
presented so that the optimization problem considers only
the torque split of a parallel electric hybrid powertrain.
In section 4, a second case is studied where the engine
On/Off decision is added to the optimization problem.
Here, the PMP approach on the convex model is applied
to find analytically the global optimal engine state and
the optimal torque split. Then, the optimal torque split is
also determined by a convex solver. In section 5, simulation
results obtained in the two study cases are compared to the
results obtained by DP. The purpose of this comparison is
to establish the performances of the simplified model and
the analytical solution for real-time energy management
strategies.
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Fig. 1. Parallel HEV powertrain model with engine On/Off
clutch

2. VEHICLE MODEL

In this section, the HEV model, often presented as quasi-
static, is given. Fig. 1 illustrates the configuration of the
powertrain architecture considered , which consists of a
battery, an electric motor, an internal combustion engine
delivering power to the wheels via a transmission block
and a clutch eon, which couples or decouples the engine
with the rest of the powertrain. The vehicle dynamics is
governed by the following equations:

Fwheel(t) = mvecv̇(t) + Fres(t)[N ] (1)

T0(t) = Fwheel(t).Rwheel[Nm] (2)

ω0(t) = v(t)/Rwheel[rad/s] (3)

where Fwheel is the force at the wheels, Fres(t) = Ftires +
Faero(t) the resistive force which includes the aerodynamic
force (Faero(t) = 0.5.ρ.Scx.v2(t)) and the tire resistance
(Ftires)(here assumed constant), mvec[kg] the total vehicle
mass and Rwheel[m] the wheel radius.

2.1 Transmission

Transmission between the wheels and the crankshaft is
given by the following static model:

ωdem(t) = ω0(t)rGear (4)

Tdem(t) =

{
T0(t)/(ηGearrGear) if T0(t) ≥ 0

(T0(t)ηGear)/rGear if T0(t) ≤ 0
(5)

Pdem(t) = Tdem(t)ωdem(t) = Te(t)ωe(t) + eon(t)Ti(t)ωi(t)
(6)

where T0, ω0, Tdem, ωdem, Te, ωe, Ti, ωi are torque and
speed of respectively the wheel, the crankshaft, the electric
motor and the internal combustion engine. eon stands for
the binary engine On/Off control, eon(t) = {0, 1} where
eon = 1 means that the engine is activated.

2.2 Battery

The battery is modeled as a simple resistive circuit (Badin,
2013; Murgovski et al., 2012) and the battery power is
given by:

Pbatt(t) = OCV (SoE)ibatt(t)−Rbatt(SoE)i2batt(t)[w] (7)

Pbatt(t) = Pe(t) + Paux (8)

The State of Energy (SoE) of the battery is defined as:

˙SoE(t) = −OCV (SoE)ibatt(t)

Emax
(9)

where Emax[J ] is the maximal battery energy. The current
ibatt[A] and SoE are limited by:

ibattmin ≤ ibatt(t) ≤ ibattmax (10)

SoEmin ≤ SoE(t) ≤ SoEmax. (11)

2.3 Engine

The engine model consists of the fuel power consumed by
the engine to deliver mechanical power:

Pfuel(t) = eon(t)Hfṁf (Ti(t), ωi(t)) (12)

where ṁf (Ti(t), ωi(t))[g/s] is the fuel consumption map of
the engine and Hf [J/g] the fuel lower heating value.

The engine torque Ti is limited by a function of the engine
speed ωi:

Timin
(ωi(t)) ≤ Ti(t) ≤ Timax

(ωi(t)) (13)

If the gear ratio is given, the engine speed is directly ob-
tained from ωdem and it is not decided by the optimization.

ωi(t) = ωdem(t) (14)

2.4 Electric Motor (EM)

The electric motor model expresses the electric power
produced by EM which includes the mechanical power
delivered and the losses obtained from the specific power
loss of the EM loss(Te(t), ωe(t)). So, the electric power
(Pe) produced by the EM has the following expression:

Pe(t) = Te(t)ωe(t) + loss(Te(t), ωe(t)) (15)

Here also, the EM speed is obtained from ωdem.

ωe(t) = ωdem(t) (16)

The EM torque is limited by torque limits depending on
the EM speed:

Temin
(ωe(t)) ≤ Te(t) ≤ Temax

(ωe(t)) (17)

3. CONVEX OPTIMIZATION WITHOUT ENGINE
ON/OFF STRATEGY

As can be seen from Elbert et al. (2014); Nüesch et al.
(2014); Yuan et al. (2013), there are many approaches to



the energy management problem in HEVs. These different
methods focus on the same objective and try to solve a
common problem, i.e. a problem of optimization under
constraints. In this section, the application of convex
optimization to the HEV energy management problem is
presented. In the following, eon = 1. Pc is the continuous
optimization problem given by:

Pc :


minu∈UJ(x(t), u(t))

ẋ = f(x(t), u(t))

Ce(x(t), u(t)) = 0

Ci(x(t), u(t)) ≤ 0

(18)

where the state is x = SoE, the control input is u = Te,
Ce are the equality constraints and Ci are the inequality
constraints. The goal of this paper is to minimize fuel
consumption under constraints. Therefore, the objective
function Jc has to be reformulated as follows:

J(x(t), u(t)) =

∫ tf

t0

Pfuel(t)eon(t)dt (19)

In the following, the time-discretized optimization problem
is solved by a convex solver. For a chosen sampling time
4t, and by applying the Euler formula, the optimization
problem is rewritten as follows:

Pd :


minu∈UJd(x(k), u(k))

x(k + 1) = 4t.f(x(k), u(k)) + x(k)

Ce(x(k), u(k)) = 0

Ci(x(k), u(k)) ≤ 0

(20)

and:

Jd(x(k), u(k)) =

N∑
k=0

Pfuel(k)eon(k) (21)

Compared to a general constrained optimization problem,
the convex optimization problem has three requirements:

• the cost function (21) must be convex;
• the inequality constraint functions Ci(x(k), u(k))

must be convex;
• the equality constraint functions Ce(x(k), u(k)) must

be affine.

Section 3.1 describes the necessary approximations for
a reformulation of the original problem into a convex
optimization problem.

3.1 Convex modeling

In order to apply convex programming, the nonlinear
vehicle model has to be approximated by a convex model,
see Boyd and Vendenberghe (2004).

Battery model To preserve the problem convexity, the
following two assumptions are made (Badin, 2013; Mur-
govski et al., 2012). Firstly, the open circuit voltage (OCV )
and the resistance on the battery Rbatt are considered con-
stant. This should be checked after optimization. Secondly,
equation (7) is relaxed with inequality.

OCV (SoE) = OCV (22)

Rbatt(SoE) = Rbatt (23)

Pbatt(t) ≤ OCV ibatt(t)−Rbattibatt
2(t) (24)

Engine model Here, equation (12) is approximated by
a second order polynomial with speed dependent coeffi-
cients.

P̂fuel(t) = a0(ωi(t)) + a1(ωi(t))Ti(t) + a2(ωi(t))Ti
2(t)

(25)
where the coefficients a0, a1 and a2 are found by least
squares for a number of grid points of ωi.
Fig. 2 is the representation of an example of the orig-
inal and the approximated engine models. The maxi-
mum relative error (REfuel) of the fuel power approxi-
mation was calculated using the expression REfuel(t) =

maxωi
(
Pfuel(ωi(t))−P̂fuel(ωi(t))

Pfuel(ωi(t))
). Fig.2 shows that the ap-

proximated engine model is sufficiently representative of
the original engine model.

0 50 100 150 200 250

14 

12 

10 

8 

6 

4 

2 

0

x 10
4

Torque [Nm]

P
ow

er
 [W

]

P
f

P
f 
approximated

1000 1500 2000 2500 3000 3500

10 

5 

0

Engine Speed [tr/min]

R
E

[%
]

fu
el

2000 tr/min

3000 tr/min

1000 tr/min

Fig. 2. The original and the approximated fuel power
model for representative engine speeds (top) and the
maximum relative error resulting from this approxi-
mation (bottom) for NEDC cycle speeds

Electric Motor model Here, equation (15) is relaxed with
inequality and approximated by a second order polynomial
with speed dependent coefficients.

Pe(t) ≥ b0(ωe(t))+b1(ωe(t))Te(t)+b2(ωe(t))Te
2(t) = P̂e(t)

(26)
where the coefficients b0, b1 and b2 are found by least
squares for a number of grid points of ωe. Fig. 3 is
the representation of an example of the original and the
approximated EM models. The relative error (REe) of
the electrical power approximation was calculated using

the expression REe(t) = maxωe
(Pe(ωe(t))−P̂e(ωe(t))

Pe(ωe(t))
). Fig.

3 shows that the approximated EM model is sufficiently
representative of the original EM model. As for REfuel,
REe is due to the interpolation between two speeds (e.g
between 2500 rpm and 3000 rpm).

3.2 Convex problem resolution

The original problem, after approximations, is rewritten
as a convex problem and can be solved by a convex
solver. Moreover, according to the PMP, minimizing (19) is
equivalent to minimizing the Hamiltonian function which
is calculated from (9) and (12), as follows:
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H(x(t), u(t)) = Pf (Te(t), t)eon(t) + s(t)
OCV ibatt(Te(t), t)

Emax
(27)

Where x(t) = SoE(t), u(t) = [Te(t) eon(t)]T , s is
the Lagrange multiplier and OCV ibatt(t) = Pbatt(t) +
Rbattibatt

2(t). Here, it is assumed that the battery losses
are neglected(Rbattibatt

2(t) ≈ 0), therefore, OCV ibatt(t) ≈
Pbatt(t). Thus, by replacing Pbatt(t) by (8), Pf (t) by (25)
and Pe(t) in (8) by (26), the Hamiltonian (27) becomes:
H(t, u(t)) = a0(t) + a1(t)Ti(t) + a2(t)Ti

2(t) + s(t)(b0(t) +
b1(t)Te(t)+b2(t)Te

2(t)+Paux(t)) Therefore, H is minimum
when ∂H

∂Te
= 0, so that:

T ∗e (t) =
2a2(t)Tdem(t) + a1(t)− s∗(t)b1(t)

2(a2(t) + s∗(t)b2(t))
(28)

Finally, in order to calculate the optimal torque split, the
optimal equivalence factor s∗ must be found so that the
desired final state is reached. Here, s∗ is determined by
dichotomy.

Afterwards, a convex solver is used to solve the convex
problem and its results are compared to the results of
PMP. The optimization problem is presented to the solver
as follows



min

N∑
k=1

P̂fuel(k)eon(k)

s.t. Tdem(k) = Te(k) + eon(k)Ti(k)

Pe(k) ≥ b0(ωe(k)) + b1(ωe(k))Te(k) + b2(ωe(k))Te
2(k)

Pbatt(k) ≤ OCV ibatt(k)−Rbattibatt
2(k)

Temin
(ωe(k)) ≤ Te(k) ≤ Temax

(ωe(k))

Timin(ωi(t)) ≤ Ti(k) ≤ Timax(ωi(t))

SoEmin ≤ SoE(k) ≤ SoEmax

ibattmin
≤ ibatt(k) ≤ ibattmax

Pbatt(k) = Pe(k) + Paux

SoE(k + 1) = SoE(k)−∆t OCV ibatt(k)/Emax

SoE(1) = SoE(N) = 50%
(29)

Then, (29) is rewritten in a matrix form. The quadratic
functions are expressed in the following form: XTAX +
cX + d, whereas the affine functions are formulated as:
eX + l.
X(4N × 1) is the optimization variable, such that:

X =

 Ti
Te
SoE
ibatt


Ti = [Ti(1)Ti(2)...Ti(N)]T (N × 1)
Te = [Te(1)Te(2)...Te(N)]T (N × 1)
SoE = [SoE(1)SoE(2)...SoE(N)]T (N × 1)
ibatt = [ibatt(1)ibatt(2)...ibatt(N)]T (N × 1)

Finally, the convex problem (29) can be solved using
the solvers available in Grant and Boyd (2013), such as
SeDuMi (Labit et al., 2002), or SDPT3 (Toh et al., 2006).

4. OPTIMIZATION WITH ENGINE ON/OFF
STRATEGY

In this section, the engine On/Off functionality is consid-
ered in the optimization problem (P ) (eon = {0, 1}). As
given in section 2, the binary variable eon is present in (6)
and (12). Since eon makes the problem (P ) nonconvex, it
cannot be included as a decision variable for the solver.
Therefore, this decision must precede the resolution of
the convex problem by the solver. In the following, the
PMP is used to find the globally optimal engine state
and the optimal torque split. Then, the optimal engine
On/Off decision is introduced a priori to the solver which
calculates the globally optimal torque split.

The Hamiltonian (27) can be analyzed for two cases:
engine On HOn and engine Off HOff , where:

H =

{
HOn, for eon = 1

HOff , for eon = 0

with

HOn = a0(t) + a1(t)Ti(t) + a2(t)Ti
2(t)

+ s(t)(b0(t) + b1(t)Te(t) + b2(t)Te
2(t) + Paux(t))

HOff = s(t)(b0(t) + b1(t)Te(t) + b2(t)Te
2(t) + Paux(t))

In the case ”On”, HOn is minimum for (28), whereas in
the case ”Off”, eon = 0, HOff is minimum when

T ∗,Off
e (t) = Tdem(t) (30)

since Ti(t) = 0 and (6) have to be satisfied. The condition
of optimality, minimizing the Hamiltonian, to switch on
the engine is:

HOn(T ∗,On
e ) ≤ HOff (T ∗,Off

e ) (31)

By inserting (28) and (30) in (31), the conditions on the
requested torque become:

Tdem(t) ≤ T 1
lim(t) (32)

Tdem(t) ≥ T 2
lim(t) (33)

Where T 1,2
lim(t) =

a1(t)−s∗(t)b1(t)∓
√

a0(t)(a2(t)+s∗(t)b2(t))

2s∗(t)b2(t)
.

From (32) and (33), the torque threshold is a function of
the optimal equivalence factor and the model parameters
(a0(t), a1(t), a2(t) and b0(t), b1(t), b2(t)). The optimal en-
gine On/Off decision is given by

eon
∗(t) =

{
1, if Tdem(t) ≤ T 1

lim(t) or Tdem(t) ≥ T 2
lim(t)

0, else



Fig. 4 shows the optimization On/Off process. Firstly, the
optimal engine state e∗on and the optimal EM torque T ∗ePMP

are calculated by finding a first s∗ by dichotomy. As the
control could be singular (Delprat and Hofman, 2014), a
second parameter ts was introduced to switch for another
value of s∗ in order to converge to the desired final SoE.
ts permits to switch between two values of s∗ (e.g. s∗1 and
s∗2 in Fig. 5). The existence of ts is demonstrated by the
fact that (34) is continuous, SoEtf (ts = t0) > 50% and
SoEtf (ts = tf ) < 50%. The expression of SoEtf (ts) is
given by:

SoEtf (ts) = −
∫ ts

t0

˙SoE(t)dt|s=s∗1
−
∫ tf

ts

˙SoE(t)dt|s=s∗2

(34)
Secondly, the optimal EM torque T ∗eCV X

is also found by a
convex solver for the predefined command eon. To ensure
optimality in the solution given by convex programming,
the equivalence factor sout must be optimal. In Murgovski
et al. (2013), it was shown that the necessary condition for
a globally optimal solution is: sin ≡ sout.

𝑒𝑜𝑛 and 𝑇𝑒
by PMP

𝑒𝑜𝑛∗

Optimal Torque 
Split by CVX

𝑇𝑒𝑃𝑀𝑃
∗ 𝑠∗

𝑠𝑜𝑢𝑡

𝑠𝑖𝑛
𝑇𝑑𝑒𝑚

𝑇𝑒𝐶𝑉𝑋∗

Fig. 4. Optimization process including engine On/Off
strategy
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5. RESULTS

In this section, the evaluation of the convex method is
presented by comparing its results to DP results. In order
to ensure the robustness of the control (torque split and/or
engine state) obtained from the simplified model, the latter

was applied on the original model. For each method, it is
assumed that the driving cycle is given. The minimum,
maximum and initial value of the SoE is 25%, 85% and
50%, respectively.

Tables 1 and 2 summarize the results obtained in terms of
fuel consumption (FC) and computation time for four cy-
cles: NEDC, ARTEMIS urban, road and highway. For the
convex method, the fuel consumption value was obtained
by applying the strategy on the original vehicle model.

Cycle Strategy CPU FC
time [s] [L/100km]

CVX 6 4.69
NEDC DP 18 4.69

PMPCO 4 4.69

CVX 7 6.75
ARTEMIS road DP 17 6.75

PMPCO 6 6.75

CVX 5 10.16
ARTEMIS highway DP 17 10.16

PMPCO 6 10.16

Table 1. Fuel consumption and time computa-
tion results without engine On/Off strategy

Cycle Strategy CPU FC
time [s] [L/100km]

NEDC PMP/CVX 13 2.39
DP 28 2.38

PMPCO 10 2.39

ARTEMIS road PMP/CVX 13 3.84
DP 26 3.83

PMPCO 8 3.84

ARTEMIS highway PMP/CVX 12 6.38
DP 27 6.34

PMPCO 7 6.38

Table 2. Fuel consumption and time computa-
tion results with engine On/Off strategy

From tables 1 and 2, convex optimization finds almost the
same fuel consumption as the one found by DP. These
results prove that the solution based on the simplified
model is very close to the globally optimal solution. In
addition, the CPU time of the analytical method is lower
than the one of DP and almost the same as convex
programming. Fig. 6 and Fig. 7 show that the strategies
provide a similar SoE trajectory.

6. CONCLUSION

In this paper, convex optimization is presented and applied
to calculate the energy management strategy for a parallel
HEV. The results of the comparison show that the convex
method, which is based on simplified models, provides
an optimal solution close to the global optimum given
by DP. This leads to the validation of the approximated
models and encourages their use for embedded optimal
control. Moreover, the convex strategy presents two other
attractive advantages. The first one is its low computation
time compared to DP which will be even more interesting
when the optimization problem has more than one state
variable. The second one is that it does not require
discretization of the continuous control and state variables
which introduces errors in the solutions. In addition,
the PMP analytical method has two more important
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advantages: it is easier to implement and to evaluate its
robustness.
From the results of optimization with the engine On/Off
strategy presented in section 5, two important conclusions
can be drawn: first, the engine On/Off functionality allows
a significant reduction in fuel consumption. Secondly, the
analytical method is very efficient, since its solution is very
close to the globally optimal solution given by DP.
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