
HAL Id: hal-01436460
https://univ-orleans.hal.science/hal-01436460v2

Submitted on 14 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Permutive one-way cellular automata and the finiteness
problem for automaton groups

Martin Delacourt, Nicolas Ollinger

To cite this version:
Martin Delacourt, Nicolas Ollinger. Permutive one-way cellular automata and the finiteness problem
for automaton groups. Computability in Europe, Jun 2017, Turku, Finland. �10.1007/978-3-319-
58741-7_23�. �hal-01436460v2�

https://univ-orleans.hal.science/hal-01436460v2
https://hal.archives-ouvertes.fr


Permutive one-way cellular automata and the

�niteness problem for automaton groups

Martin Delacourt and Nicolas Ollinger

Univ. Orléans, LIFO EA 4022, FR-45067 Orléans, France
{martin.delacourt,nicolas.ollinger}@univ-orleans.fr

Abstract. The decidability of the �niteness problem for automaton
groups is a well-studied open question on Mealy automata. We connect
this question of algebraic nature to the periodicity problem of one-way
cellular automata, a dynamical question known to be undecidable in the
general case. We provide a �rst undecidability result on the dynamics of
one-way permutive cellular automata, arguing in favor of the undecid-
ability of the �niteness problem for reset Mealy automata.

Keywords: reset Mealy automata, one-sided cellular automata, permutive cel-
lular automata, periodicity problem, reversible computation

1 Introduction

Finite-state automata provide a convenient �nite description for di�erent kinds of
behavior generated by their computations. As such, Mealy automata [10] provide
a �nite description for the family of automaton (semi)groups that has proven its
usefulness to generate interesting counter examples in the �eld of group theory
[3]. Several decision problems inspired by algebraic questions have been studied
on automaton groups: the word problem is decidable whereas the conjugacy
problem is undecidable [16]. The general case of the �niteness problem remains
open [1] although special cases have been solved: Gillibert [9] proved that the
problem is undecidable for semigroups and Klimann [15] that it is decidable for
reversible Mealy automata with two states. The status of the �niteness problem
remains open for the class of reset Mealy automata.

Cellular automata [14] provide a �nite description for a family of discrete dy-
namical systems, the endomorphisms of the shift dynamical system [11]. Decision
problems inspired by dynamical questions have been investigated on cellular au-
tomata since the work of Amoroso and Patt [2]. The computation nature of
cellular automata lead to sophisticated construction techniques to establish the
undecidability of various decision problems like the nilpotency problem [13] or
more recently the periodicity problem [12]. The status of the periodicity problem
remains open for one-way cellular automata.

Without much surprise, cellular automata can be a valuable tool to establish
undecidability results on Mealy automata. Indeed, Gillibert's result is inspired
by Kari's proof of the undecidability of the nilpotency problem.



2 M. Delacourt, N. Ollinger

In this paper, we study the computational power of reversible permutive one-
way cellular automata [4, 7]. Our �rst contribution is a precise formalization of
the connection between both open problems: the �niteness problem for reset
Mealy automata is decidable if and only if the periodicity problem for one-
way cellular automata is decidable. Our second contribution is a technique to
embed computation inside reversible one-way cellular automata using permutive
automata. The technique is applied to prove a �rst undecidability result on these
objects.

2 De�nitions

For a detailed introduction on Mealy automata, the reader is referred to Bartholdi
and Silva [3] and to Kari [14] for cellular automata.

2.1 Mealy automata

A Mealy automaton is a deterministic complete 1-to-1 transducer (A,Σ, δ, ρ),
where A is a �nite set of states,Σ a �nite alphabet, δ = (δi : A→ A)i∈Σ is the set
of transition functions and ρ = (ρx : Σ → Σ)x∈A the set of production functions.

The transition x
i|ρx(i)−−−−→ δi(x) is depicted by x δi(x)

i

ρx(i)

.

The production functions naturally extend to functions on the set of �nite
words : ρ = (ρx : Σ∗ → Σ∗)x∈A with ρx(au) = ρx(a)ρδa(x)(u). The semigroup
generated by the automaton is the set of all compositions of the production
functions H = 〈ρx : x ∈ A〉. An automaton semigroup is a semigroup generated
by a Mealy automaton.

A Mealy automaton is invertible if ρx is a permutation of Σ for every x ∈ A.
Note that it implies that every ρx is also a permutation on Σk for every k ∈ N.
The group generated by a invertible Mealy automaton is G =

〈
ρx, ρ

−1
x : x ∈ A

〉
.

An automaton group is a group generated by a Mealy automaton. An invertible
Mealy automaton generates a �nite group if and only if it generates a �nite
semigroup [1].

Finiteness problem Given an invertible Mealy automaton, decide if the gen-
erated group is �nite.

A Mealy automaton is reset if, for each transition x
i|ρx(i)−−−−→ δi(x), the output

state δi(x) depends only on the input letter i and not on the input state x, that
is δi(x) = f(i) for some letter-to-state map f : Σ → A. To simplify notations,
such an automaton will be denoted as (A,Σ, f, ρ).

When studying the decidability of the �niteness problem restricted to reset
automata, one can focus on the case Σ = A and f = Id as stated below.

Lemma 1. The group generated by a reset Mealy automaton (A,Σ, f, ρ) is �nite
if and only if it is the case for the automaton (Σ,Σ, 1, ρ′) with ρ′x(i) = ρf(x)(i).



Permutive one-way cellular automata and automaton groups 3

Proof. Let G be the group generated by (A,Σ, f, ρ) and H be the group gener-
ated by (Σ,Σ, 1, ρ′). As every generator ρ′x of H is a generator ρf(x) of G then
H is a subgroup of G. A generator ρy of G with y ∈ A \ f(Σ) is not a generator
of H, however as y can only be an initial state of a transition, it only impacts
the size of G by a factor n! where n is the size of Σ. �

2.2 Cellular automata

A one-way cellular automaton (OCA) F is a triple (X, r, δ) where X is the �nite
set of states, r is the radius and δ : Xr+1 → X is the local rule of the OCA. A
con�guration c ∈ XZ is a biin�nite word onX. The global function F : XZ → XZ

synchronously applies the local rule: F(c)i = δ(ci, . . . , ci+r) for every c ∈ XZ

and i ∈ Z. The spacetime diagram ∆ : Z × N → X generated by an initial
con�guration c is obtained by iterating the global function: ∆(k, n) = Fn(c)k
for every k ∈ Z and n ∈ N. Following Hedlund [11] characterization of cellular
automata as endomorphisms of the shift, we assimilate an OCA, with minimal
radius, and its global function.

Notice that OCA are the restriction of classical cellular automata (CA) where
a cell only depends on other cells on the right side. The identity function Id, the
left shift map σl and the XOR rule are OCA, respectively encoded as (X, 0, 1),
(X, 1, (x, y) 7→ y) and ({0, 1}, 1,⊕), whereas the right shift map σr is not.

A state x ∈ X is quiescent if δ(x, . . . , x) = x. A con�guration is �nite if it
contains the same quiescent state x everywhere but on �nitely many positions.

An OCA is (left) permutive if the map x 7→ δ(x, x1, . . . , xr) is a permutation
of X for every (x1, . . . , xr) ∈ Xr. An OCA is periodic of period T > 0 if FT = Id.

Periodicity problem Given a cellular automaton, decide if it is periodic.

An OCA is reversible if its global function is bijective with an inverse that
is also an OCA. A periodic OCA F of period T is reversible of inverse FT−1.
Following Hedlund [11], the inverse of a bijective OCA is always a CA, how-
ever usually not one-sided. The following lemmas assert that this technical issue
disappears by considering only permutive OCA.

Lemma 2. Every reversible OCA is permutive.

Proof. Let F be a reversible OCA. As both F and F−1 are OCA, F is bijective
on XN too. Let (x, x′, x1, . . . , xr) ∈ Xr+2 and c = x1 · · ·xrxωr . If x 6= x′, as
F(xc) 6= F(x′c), we have δ(x, x1, . . . , xr) 6= δ(x′, x1, . . . , xr). �

Lemma 3. Every bijective permutive OCA is reversible.

Proof. Let F be a bijective permutive OCA. By permutivity f : X ×XN → X
de�ned by f(y, c) = x where F(xc) = yF(c) is well de�ned and permutive
in its �rst argument. Let u, u′ ∈ X−N and v′ ∈ XN. Let w ∈ X−N and v ∈
XN be such that F−1(u′v′) = wv. Let w′ ∈ X−N be de�ned recursively by
w′i = f(ui, w

′
i−1 · · ·w′0v). By construction F−1(uv′) = w′v. As F−1(uv′) and

F−1(u′v′) are equal on N for all u, u′, v′ the CA F−1 is an OCA. �



4 M. Delacourt, N. Ollinger

Note that the inverse of a bijective permutive OCA can have a larger radius.
However, as bijectivity is decidable for cellular automata [2] and as bijectivity is
preserved by grouping cells [8], when studying the decidability of the periodicity
problem restricted to permutive OCA, one can focus on the case of reversible
permutive OCA with radius 1 and inverse radius 1 syntactically characterized
by the following lemma (already proven in [4]).

Lemma 4. An OCA (X, 1, δ) is reversible with inverse radius 1 if and only if
it is permutive and for all x, y, x′, y′ ∈ X, if δ(x, y) = δ(x′, y′) then πx = πx′

where πy maps x to δ(x, y).

From now on, we only consider these OCA.

3 Linking �niteness and periodicity

Reset Mealy automata with Σ = A and f = Id and permutive OCA of radius 1
are essentially deterministic complete letter-to-letter transducers of a same kind,
as depicted on Figure 1. The following proposition formalizes this link.

xa

a

ρx(a)

b

b

ρa(b)

←→
b a

ρa(b)

Fig. 1. linking reset Mealy automata to permutive OCA

Proposition 1. The group generated by a reset automaton (Σ,Σ, 1, ρ) is �nite
if and only if the permutive OCA (Σ, 1, δ), where δ(x, y) = ρy(x), is periodic.

Proof. First note that the following equations hold for all u0, u1, . . . , uk ∈ Σ:

ρuk
(uk−1, uk−2, . . . , u0) = ρuk

(uk−1)ρuk−1
(uk−2) . . . ρu1

(u0)

δ(u0, u1, . . . , uk) = ρu1
(u0)ρu2

(u1) . . . ρuk
(uk−1)

By extension, for all k > t > 0 and for all words u ∈ Σt and v ∈ Σk, the
following equation holds: ρu(v)k = δt(vk, vk−1, . . . , vk−t).

Suppose now the group generated by the reset Mealy automaton is �nite.
Let a ∈ Σ be any letter and let n be the order of ρa, then ρan = (ρa)

n = Id thus
δn = Id, the OCA is periodic.

Conversely, let n be the period of the OCA. By previous remarks, for all
k > 0 and words u, v ∈ Σn, w ∈ Σk, the image ρu(vw) is v

′w for some v′ ∈ Σn.
The set of ρu generates a subgroup of permutations of Σn, which is �nite, when
u takes all possible values in Σn. The automaton group is �nite. �



Permutive one-way cellular automata and automaton groups 5

Corollary 1. The �niteness problem restricted to reset Mealy automata is de-
cidable if and only if the periodicity problem restricted to OCA is decidable.

Notice that the situation described by this corollary is optimal: if the problem
is decidable, Mealy automata is the right setting to prove this result and the
decidability of the periodicity for OCA will be a consequence; if the problem is
undecidable, cellular automata is the right setting to prove this result and the
undecidability of the �niteness problem will be a consequence. The remainder
of this paper is dedicated to prove that computational phenomena do appear
inside the dynamics of permutive OCA, advocating for the undecidability of the
problem.

Conjecture 1. The �niteness problem is undecidable.

4 Computing with permutive OCA

As shown in Fig 1, the time goes up in every representation of this paper.
Given a permutive OCA, we show how to build a reversible OCA that can

simulate every spacetime diagram of the original. The idea is to slow down
the computation by delaying each state using a �xed number of distinct copies
per state and perform a transition only after going through every copy. Adjacent
columns of states are then desynchronized to obtain reversibility as a consequence
of permutivity.

De�nition 1. Let F be an OCA (X, 1, δ) and let 1 ≤ k ≤ n − 1. The (n, k)-
embedding F ′ of F is the OCA (X ′, 1, δ′) where X ′ =

⋃
1≤i≤n{x(i) : x ∈ X} and

such that:

∀x(α), y(β) ∈ X ′ δ′
(
x(α), y(β)

)
=

{
δ(x, y)(1) if α = n and β = k

x(1+(α mod n)) otherwise

Fig. 2 illustrates the embedding.

Lemma 5. The (n, k)-embedding of a permutive OCA F is reversible.

Proof. The local rule of the inverse OCA τ can be de�ned by

� τ(z(1), y(k+1)) = x(n) for all x, y ∈ X such that δ(x, y) = z;
� τ(x(i), ∗) = x((i−1 mod n)+1) otherwise. �

The idea of the embedding is to desynchronize adjacent columns by shifting
them vertically of some constant k between 1 and n− 1. When two consecutive
columns are not correctly arranged, they do not interact.

Lemma 6. There exists an injective transformation of spacetime diagrams of
F (in XZ×N) into spacetime diagrams of F ′ (in X ′Z×Z): for every c ∈ XZ, there
exists a unique con�guration c′ ∈ X ′Z for F ′ with

∀m ∈ Z, p ∈ N,∀1 ≤ i ≤ n,F ′m(n−k)+pn+i−1(c′)m = (Fp(c)m)
(i)



6 M. Delacourt, N. Ollinger

x y

z
−→

x(1)

x(2)

x(3)

z(1)

z(2)

z(3)

y(1)

y(2)

y(3)

Fig. 2. The (3, 1)-embedding is given by the transformation of the local rule (to the
left). The space-time diagram of the XOR OCA with a unitary con�guration (at the
center) is transformed into a space-time diagram of a reversible OCA (to the right).

Remark 1. If the OCA has a particular state 0 such that δ(x, 0) = x for every
x ∈ X, we can keep a unique version of state 0 by identifying the 0(i) as a unique
state 0 where

δ′(0, y(k)) = (δ(0, y))(1)

δ′(0, ∗) = 0 where ∗ can be anything

δ′(x(i), 0) = x(1+(i mod n))

This lemma allows to transfer results from F to F ′, in the sequel we prove
the following result for permutive OCA and obtain it for reversible ones:

Reachability problem Given a reversible OCA with a quiescent state 0 ∈ X
and two states x, y ∈ X, decide if y appears in the spacetime diagram generated
by the initial con�guration ω0.x0ω.

Theorem 1. The reachability problem is undecidable for reversible OCA.

5 Main construction

To prove the theorem, we need to embed some Turing complete computation
into permutive OCA. This goal is achieved by simulating multi-head walking
automata. This section describes the simulation of these automata by permutive
OCA.

5.1 Multi-head walking automata

A multi-head walking automaton consists of a �nite number of heads on the
discrete line, each one of them provided with a state out of a �nite set. At each
step, they can only interact (read the state) with the heads that share the same
cell, update their state and move. Initially, all the heads are in position 0.



Permutive one-way cellular automata and automaton groups 7

De�nition 2. A k-head walking automaton is de�ned by (Σ, I, F, (fi, gi)1≤i≤k)
where Σ is a �nite alphabet that does not contain ⊥, I ∈ Σ is the initial state,
F ⊆ Σ is a set of �nal states, ∀i, fi : (Σ ∪{⊥})k → Σ and ∀i, gi : (Σ ∪{⊥})k →
{−1, 0, 1} are the update functions for the state and the position.

A con�guration of this automaton is a k-tuple a = (ai, si)1≤i≤k ∈ (Z × Σ)k

and its image con�guration is (ai+ gi(bi), fi(bi))1≤i≤k where ∀1 ≤ i ≤ k, bi(j) =
sj if ai = aj and ⊥ otherwise.

Starting from con�guration (0, I)k, the automaton computes the successive
images and stops only if the position of every head is 0 and their states are �nal.

A multi-head walking automaton can mimic a counter with 2 heads. Turing
completeness is achieved by simulating 2-counter Minsky machines.

Proposition 2. The halting problem of 4-head walking automata is undecidable.

5.2 Finite con�gurations

Every �nite con�guration can be written c = ω0.u00
ω for some u0 ∈ Xn, n ∈

N, hence its successive images can only be Fk(c) = ω0vk.wk0
ω for some vk ∈

Xk, wk ∈ Xn, that is: the �nite non-quiescent word extends to the left, one cell
at each step. We also have the following result.

Lemma 7 (Coven et al [6]). In the spacetime diagram associated to a �nite
con�guration, every column is periodic.

5.3 P-signals

Most cellular automata constructions use signals as elementary geometrical build-
ing blocks. Unfortunately, it is not possible to embed a classical signal in a permu-
tive OCA nor is it possible to directly simulate multi-head automata. We provide
P-signals as a technique to replace signals of speed k by an (n, k)-embedding of
the front line of the spacetime diagram of the XOR with only one non-zero cell.
This will e�ectively allow to send a signal through space in a reversible permutive
OCA.

For our construction, we �x n = 7, hence we can use speeds from 1 to 6. Due
to remark 1, the states of these signals will be denoted Z8 = {0, 1, 2, 3, 4, 5, 6, 7}.
Next lemma states that di�erent speeds induce similar spacetime diagrams up
to a vertical shift on each column.

Lemma 8. Denote Fk and Fk′ the OCA corresponding to signals of speeds k
and k′ and let c be the con�guration ω0.10ω then we have

∀m ≤ 0,∀p ≥ 0,Fpk (c)m = Fp−(k−k
′)m

k′ (c)m .



8 M. Delacourt, N. Ollinger

5.4 2-recognizability

Our construction relies on the ability to identify some speci�c sets of spacetime
positions. We achieve this goal by considering products of independent P-signals.
To avoid boring calculations, we rely on the following lemma to assert some
regularity of P-signals and rely on the theory of p-recognizable sets of tuples of
integers [5] to characterize these positions.

Lemma 9. The spacetime sequence ∆ : N2 → Zn+1 of the (n, k)-embedding F
of the XOR, where ∆(x, y) = Fy(ω0.10ω)−x, is 2-recognizable.

Proof. The spacetime sequence ∆ of the (n, k)-embedding F is generated by the
2-substitution s : Zn+1 → Z2

n+1 uniquely de�ned, as per Fig. ??, by

s(0) =

(
0 0
0 0

)
s

n...
1

 =

(
n · · · (k + 1) k · · · 1 n · · · (k + 1) · · · 1
0 · · · 0 n · · · · · · · · · 1 0 · · · 0

)ᵀ

Indeed, the substitution rule is compatible with the local rule of the OCA. �

5.5 Computation windows

Let F denote the OCA we are constructing. We use 4 P-signals of speeds 2, 3, 5
and 6 as foundations of F � they allow us to build computation windows. Let c
be the initial con�guration which is null everywhere except for c(0) = (1, 1, 1, 1).
We use Lemma 9 twice for each of the following lemmas, that is, we have a
characterization of the set of positions where some speci�c state pairs appear.
Both lemmas are illustrated in Fig. 3, 4 and 5.

Lemma 10.

∀m ≤ 0, p ≥ 0,

{
Fp(c)m = (1, 0,_,_)

Fp(c)m+1 = (0, 3,_,_)
⇔
{
∃h ∈ N∗,m = −8h
p ≡ −3m− 1[−14m]

Lemma 11.

∀m ≤ 0, p ≥ 0,

{
Fp(c)m = (_,_, 7, 6)

Fp(c)m+1 = (_,_, 5, 0)
⇔
{
∃h ∈ N∗,m = −8h
p ≡ −12m− 1[−14m]

Hence we add a �fth layer using alphabet {0, 1} with the rule:

δ5 ((1, 0,_,_, x), (0, 3,_,_,_)) = 1− x
δ5 ((_,_, 7, 6, x), (_,_, 5, 0,_)) = 1− x

δ5 ((_,_,_,_, x), (_,_,_,_,_)) = x otherwise.

Actually, the same arguments work for columns −2·8h, h ∈ N∗ and −4·8h, h ∈
N∗, hence we use them all. We therefore call computation windows the vertical
segments in the spacetime diagram where the �fth layer contains 1:

(m, p) in a computation window ⇔ ∃h ∈ N∗,m = −2h, p′ ≡ p[14 · 2h]
and 3 · 2h ≤ p′ < 12 · 2h.



Permutive one-way cellular automata and automaton groups 9

Fig. 3. Speeds 2
and 3 P-signals
determine the
positions of the
lower points of
the computation
windows as stated
in Lemma 10.

Fig. 4. Speeds 5
and 6 P-signals de-
termine the posi-
tions of the up-
per points of the
computation win-
dows as stated in
Lemma 11.

Fig. 5. In light
gray, speeds 2,
3, 5 and 6 P-
signals together
allow to draw the
whole computation
windows.

Fig. 6. The heads are supported by speed
4 P-signals that pass through the com-
putation windows. The windows are large
enough so that this property remains even
after they are shifted up or down.

Fig. 7. When the head arrives in a com-
putation window, it is here shifted up-
ward, then upward again and downward
in the third window. The state also
changes then (red, later blue, orange and
blue again). In light gray, another head
whose position does not change.



10 M. Delacourt, N. Ollinger

5.6 Computing heads

Every head of the walking automaton is simulated on a new layer. It is composed
of a support that is mainly a speed 4 P-signal, and an internal state that belongs
to the set of states Σ of the walking automaton. We need 4 heads, hence there
are 4 additional layers (6 to 9).

The idea is that the heads move like speed 4 P-signal carrying internal states
until they reach a computation window (as illustrated in Fig. 6). Then, depending
on the context, they update their internal state and eventually shift upward
or downward. Each shift corresponds to a move of the head of the walking
automaton. Hence its position is encoded by the global shift applied to it, call
it the height of the head.

More formally, each layer representing a head uses the alphabet ([1..7]×Σ)∪
(0,⊥). Outside computation windows, the �rst component follows the rule of
speed 4 signals, and the second component is maintained if possible or otherwise
taken from the right neighbor.

Suppose now that we compute the new state of cell m at time p with (m, p)
inside a computation window. Denote by x, y and z the states of cells (m, p),
(m+1, p) and (m, p+1) in the spacetime diagram. The following rules apply to
layer 6 (the same applies for other layers):

� if y6 = (0,⊥), then apply standard rules.
� if y6 6= (0,⊥), look at every other layer where the support state is the same
and apply f1 and g1, the update functions of the walking automaton, with
these states. If the result of g1 is −1 (resp. 0, 1), apply the rule of a speed 3
(resp. 4, 5) signal to the �rst component. If the support of z6 is not 0, then
the internal state is given by f1.

5.7 Simulation

Finally, the OCA we build has 9 layers : 4 P-signals to determine the computation
windows on the �fth layer, and 4 to simulate the 4 heads of the Turing universal
walking automaton. The initial con�guration is the �nite con�guration c with

c(0) = (1, 1, 1, 1, 0, (1, I), (1, I), (1, I), (1, I))

c(m) = (0, 0, 0, 0, 0, (0,⊥), (0,⊥), (0,⊥), (0,⊥)) elsewhere.

First note that the height can vary of at most 1 each time the head crosses
a column −2h, h ∈ N, hence:

Lemma 12. Given any simulating head, while its height is between −h and h
in column m = −2h, h ∈ N, every non (0,⊥) value of the layer in this column is
inside a computation window.

This means that each head has to apply the update rule when arriving in
column −2h, h ∈ N. Now check that every time it does, one step of the com-
putation of the walking automaton is simulated. The main point is to ensure



Permutive one-way cellular automata and automaton groups 11

that two heads of the walking automaton are on the same cell at step h if and
only if the support of their simulating heads coincide on column 2h − 1. This is
true since, for any head whose height is s, its support takes value 1 exactly in
cells (2h − 1, p) with p ≡

(
4 · (2h − 1) + s

)
[7 · 2h]. This property is due to the

XOR rule, with the (7, 4)-embedding. Fig. 7 illustrates this behaviour with two
heads (one does not move to simplify the representation). This completes the
simulation and the proof of theorem 1.

6 One step further

Orbit periodicity problem Given a reversible OCA with a quiescent state
0 ∈ X and a state x ∈ X, decide if the spacetime diagram generated by the initial
con�guration ω0.x0ω is periodic.

Theorem 2. The orbit periodicity problem is undecidable for reversible OCA.

If the computation halts, the windows and the 4 P-signals that help determine
the computation heads keep progressing eternally. To reach periodicity, it is
necessary (and enough thanks to Lemma 7) to kill them all. It is possible to
do so by giving killing orders to the heads. At the halting step h0, each head is
given the responsibility to kill one of the P-signals while sacri�cing itself. They
have to slow down or speed up to meet the corresponding P-signal. Again, we
use Lemma 9 to prove that the meeting can happen on column 2h0+1 with a
local context that does not happen elsewhere.

References

1. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the �nite-
ness problem for automaton (semi) groups. International Journal of Algebra and
Computation 22(06), 1250052 (2012)

2. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of
parallel maps for tessellation structures. Journal of Computer and System Sciences
6(5), 448�464 (1972)

3. Bartholdi, L., Silva, P.V.: Groups de�ned by automata, in AutoMathA handbook

(to appear), https://arxiv.org/abs/1012.1531
4. Boyle, M., Maass, A., et al.: Expansive invertible onesided cellular automata. Jour-

nal of the Mathematical Society of Japan 52(4), 725�740 (2000)
5. Bruyere, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable

sets of integers. Bulletin of the Belgian Mathematical Society Simon Stevin 1(2),
191�238 (1994)

6. Coven, E., Pivato, M., Yassawi, R.: Prevalence of odometers in cellular automata.
Proceedings of the American Mathematical Society 135(3), 815�821 (2007)

7. Dartnell, P., Maass, A., Schwartz, F.: Combinatorial constructions associated to the
dynamics of one-sided cellular automata. Theoretical Computer Science 304(1�3),
485�497 (2003)

8. Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking ii: Classi�cations of
cellular automata. Theoretical Computer Science 412(30), 3881�3905 (2011)



12 M. Delacourt, N. Ollinger

9. Gillibert, P.: The Finiteness Problem for Automaton Semigroups is Undecidable.
International Journal of Algebra and Computation 24(01), 1�9 (2014)

10. Glushkov, V.M.: The abstract theory of automata. Uspekhi Matematicheskikh
Nauk 16(5), 3�62 (1961)

11. Hedlund, G.A.: Endomorphisms and Automorphisms of the Shift Dynamical Sys-
tems. Mathematical Systems Theory 3(4), 320�375 (1969)

12. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In:
Ochmanski, E., Tyszkiewicz, J. (eds.) Mathematical Foundations of Computer Sci-
ence (MFCS 2008). LNCS, vol. 5162, pp. 419�430 (2008)

13. Kari, J.: The nilpotency problem of one-dimensional cellular automata. siam Jour-
nal on Computing 21(3), 571�586 (1992)

14. Kari, J.: Theory of cellular automata: A survey. Theoretical computer science
334(1), 3�33 (2005)

15. Klimann, I.: Automaton semigroups: The two-state case. Theory of Computing
Systems 58(4), 664�680 (2016)

16. �uni¢, Z., Ventura, E.: The conjugacy problem in automaton groups is not solvable.
Journal of Algebra 364, 148�154 (2012)


