Martin Delacourt
email: martin.delacourt@univ-orleans.fr

Nicolas Ollinger
email: nicolas.ollinger@univ-orleans.fr

Permutive one-way cellular automata and the niteness problem for automaton groups

Keywords: reset Mealy automata, one-sided cellular automata, permutive cellular automata, periodicity problem, reversible computation

The decidability of the niteness problem for automaton groups is a well-studied open question on Mealy automata. We connect this question of algebraic nature to the periodicity problem of one-way cellular automata, a dynamical question known to be undecidable in the general case. We provide a rst undecidability result on the dynamics of one-way permutive cellular automata, arguing in favor of the undecidability of the niteness problem for reset Mealy automata.

Introduction

Finite-state automata provide a convenient nite description for dierent kinds of behavior generated by their computations. As such, Mealy automata [START_REF] Glushkov | The abstract theory of automata[END_REF] provide a nite description for the family of automaton (semi)groups that has proven its usefulness to generate interesting counter examples in the eld of group theory [START_REF] Bartholdi | Groups dened by automata[END_REF]. Several decision problems inspired by algebraic questions have been studied on automaton groups: the word problem is decidable whereas the conjugacy problem is undecidable [START_REF] Uni¢ | The conjugacy problem in automaton groups is not solvable[END_REF]. The general case of the niteness problem remains open [START_REF] Akhavi | On the niteness problem for automaton (semi) groups[END_REF] although special cases have been solved: Gillibert [START_REF] Gillibert | The Finiteness Problem for Automaton Semigroups is Undecidable[END_REF] proved that the problem is undecidable for semigroups and Klimann [START_REF] Klimann | Automaton semigroups: The two-state case[END_REF] that it is decidable for reversible Mealy automata with two states. The status of the niteness problem remains open for the class of reset Mealy automata.

Cellular automata [START_REF] Kari | Theory of cellular automata: A survey[END_REF] provide a nite description for a family of discrete dynamical systems, the endomorphisms of the shift dynamical system [START_REF] Hedlund | Endomorphisms and Automorphisms of the Shift Dynamical Systems[END_REF]. Decision problems inspired by dynamical questions have been investigated on cellular automata since the work of Amoroso and Patt [START_REF] Amoroso | Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures[END_REF]. The computation nature of cellular automata lead to sophisticated construction techniques to establish the undecidability of various decision problems like the nilpotency problem [START_REF] Kari | The nilpotency problem of one-dimensional cellular automata[END_REF] or more recently the periodicity problem [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF]. The status of the periodicity problem remains open for one-way cellular automata.

Without much surprise, cellular automata can be a valuable tool to establish undecidability results on Mealy automata. Indeed, Gillibert's result is inspired by Kari's proof of the undecidability of the nilpotency problem.

In this paper, we study the computational power of reversible permutive oneway cellular automata [START_REF] Boyle | Expansive invertible onesided cellular automata[END_REF][START_REF] Dartnell | Combinatorial constructions associated to the dynamics of one-sided cellular automata[END_REF]. Our rst contribution is a precise formalization of the connection between both open problems: the niteness problem for reset Mealy automata is decidable if and only if the periodicity problem for oneway cellular automata is decidable. Our second contribution is a technique to embed computation inside reversible one-way cellular automata using permutive automata. The technique is applied to prove a rst undecidability result on these objects.

Denitions

For a detailed introduction on Mealy automata, the reader is referred to Bartholdi and Silva [START_REF] Bartholdi | Groups dened by automata[END_REF] and to Kari [START_REF] Kari | Theory of cellular automata: A survey[END_REF] for cellular automata.

Mealy automata

A Mealy automaton is a deterministic complete 1-to-1 transducer (A, Σ, δ, ρ), where A is a nite set of states, Σ a nite alphabet, δ = (δ i : A → A) i∈Σ is the set of transition functions and ρ = (ρ x : Σ → Σ) x∈A the set of production functions.

The transition

x i|ρx(i) ----→ δ i (x) is depicted by x δ i (x) i ρ x (i)
The production functions naturally extend to functions on the set of nite words :

ρ = (ρ x : Σ * → Σ *) x∈A with ρ x (au) = ρ x (a)ρ δa(x) (u).
The semigroup generated by the automaton is the set of all compositions of the production functions H = ρ x : x ∈ A . An automaton semigroup is a semigroup generated by a Mealy automaton.

A Mealy automaton is invertible if ρ x is a permutation of Σ for every x ∈ A. Note that it implies that every ρ x is also a permutation on Σ k for every k ∈ N. The group generated by a invertible Mealy automaton is G = ρ x , ρ -1

x : x ∈ A . An automaton group is a group generated by a Mealy automaton. An invertible Mealy automaton generates a nite group if and only if it generates a nite semigroup [START_REF] Akhavi | On the niteness problem for automaton (semi) groups[END_REF].

Finiteness problem Given an invertible Mealy automaton, decide if the generated group is nite.

A Mealy automaton is reset if, for each transition x i|ρx(i)

----→ δ i (x), the output state δ i (x) depends only on the input letter i and not on the input state x, that is δ i (x) = f (i) for some letter-to-state map f : Σ → A. To simplify notations, such an automaton will be denoted as (A, Σ, f, ρ).

When studying the decidability of the niteness problem restricted to reset automata, one can focus on the case Σ = A and f = Id as stated below.

Lemma 1. The group generated by a reset Mealy automaton (A, Σ, f, ρ) is nite if and only if it is the case for the automaton (Σ, Σ, 1, ρ) with ρ x (i) = ρ f (x) (i).

Proof. Let G be the group generated by (A, Σ, f, ρ) and H be the group generated by (Σ, Σ, 1, ρ). As every generator ρ x of H is a generator ρ f (x) of G then H is a subgroup of G. A generator ρ y of G with y ∈ A \ f (Σ) is not a generator of H, however as y can only be an initial state of a transition, it only impacts the size of G by a factor n! where n is the size of Σ.

Cellular automata

A one-way cellular automaton (OCA) F is a triple (X, r, δ) where X is the nite set of states, r is the radius and δ : X r+1 → X is the local rule of the OCA. A conguration c ∈ X Z is a biinnite word on X. The global function F : X Z → X Z synchronously applies the local rule: F(c) i = δ(c i , . . . , c i+r) for every c ∈ X Z and i ∈ Z. The spacetime diagram ∆ : Z × N → X generated by an initial conguration c is obtained by iterating the global function: ∆(k, n) = F n (c) k for every k ∈ Z and n ∈ N. Following Hedlund [START_REF] Hedlund | Endomorphisms and Automorphisms of the Shift Dynamical Systems[END_REF] characterization of cellular automata as endomorphisms of the shift, we assimilate an OCA, with minimal radius, and its global function.

Notice that OCA are the restriction of classical cellular automata (CA) where a cell only depends on other cells on the right side. The identity function Id, the left shift map σ l and the XOR rule are OCA, respectively encoded as (X, 0, 1), (X, 1, (x, y) → y) and ({0, 1}, 1, ⊕), whereas the right shift map σ r is not.

A state x ∈ X is quiescent if δ(x, . . . , x) = x. A conguration is nite if it contains the same quiescent state x everywhere but on nitely many positions.

An OCA is (left

) permutive if the map x → δ(x, x 1 , . . . , x r) is a permutation of X for every (x 1 , . . . , x r) ∈ X r . An OCA is periodic of period T > 0 if F T = Id.
Periodicity problem Given a cellular automaton, decide if it is periodic.

An OCA is reversible if its global function is bijective with an inverse that is also an OCA. A periodic OCA F of period T is reversible of inverse F T -1 . Following Hedlund [START_REF] Hedlund | Endomorphisms and Automorphisms of the Shift Dynamical Systems[END_REF], the inverse of a bijective OCA is always a CA, however usually not one-sided. The following lemmas assert that this technical issue disappears by considering only permutive OCA. Lemma 2. Every reversible OCA is permutive.

Proof. Let F be a reversible OCA. As both F and F -1 are OCA, F is bijective on

X N too. Let (x, x , x 1 , . . . , x r) ∈ X r+2 and c = x 1 • • • x r x ω r . If x = x , as F(xc) = F(x c), we have δ(x, x 1 , . . . , x r) = δ(x , x 1 , . . . , x r).
Lemma 3. Every bijective permutive OCA is reversible.

Proof. Let F be a bijective permutive OCA. By permutivity

f : X × X N → X dened by f (y, c) = x where F(xc) = yF(c) is well dened and permutive in its rst argument. Let u, u ∈ X -N and v ∈ X N . Let w ∈ X -N and v ∈ X N be such that F -1 (u v) = wv. Let w ∈ X -N be dened recursively by w i = f (u i , w i-1 • • • w 0 v). By construction F -1 (uv) = w v. As F -1 (uv) and F -1 (u v) are equal on N for all u, u , v the CA F -1 is an OCA.
Note that the inverse of a bijective permutive OCA can have a larger radius. However, as bijectivity is decidable for cellular automata [START_REF] Amoroso | Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures[END_REF] and as bijectivity is preserved by grouping cells [START_REF] Delorme | Bulking ii: Classications of cellular automata[END_REF], when studying the decidability of the periodicity problem restricted to permutive OCA, one can focus on the case of reversible permutive OCA with radius 1 and inverse radius 1 syntactically characterized by the following lemma (already proven in [START_REF] Boyle | Expansive invertible onesided cellular automata[END_REF]). Lemma 4. An OCA (X, 1, δ) is reversible with inverse radius 1 if and only if it is permutive and for all x, y, x , y ∈ X, if δ(x, y) = δ(x , y) then π x = π x where π y maps x to δ(x, y).

From now on, we only consider these OCA.

3 Linking niteness and periodicity Reset Mealy automata with Σ = A and f = Id and permutive OCA of radius 1 are essentially deterministic complete letter-to-letter transducers of a same kind, as depicted on Figure 1. The following proposition formalizes this link. Proof. First note that the following equations hold for all u 0 , u 1 , . . . , u k ∈ Σ:

ρ u k (u k-1 , u k-2 , . . . , u 0) = ρ u k (u k-1)ρ u k-1 (u k-2) . . . ρ u1 (u 0) δ(u 0 , u 1 , . . . , u k) = ρ u1 (u 0)ρ u2 (u 1) . . . ρ u k (u k-1)
By extension, for all k > t > 0 and for all words u ∈ Σ t and v ∈ Σ k , the following equation holds:

ρ u (v) k = δ t (v k , v k-1 , . . . , v k-t).
Suppose now the group generated by the reset Mealy automaton is nite. Let a ∈ Σ be any letter and let n be the order of ρ a , then ρ a n = (ρ a) n = Id thus δ n = Id, the OCA is periodic.

Conversely, let n be the period of the OCA. By previous remarks, for all k > 0 and words

u, v ∈ Σ n , w ∈ Σ k , the image ρ u (vw) is v w for some v ∈ Σ n .
The set of ρ u generates a subgroup of permutations of Σ n , which is nite, when u takes all possible values in Σ n . The automaton group is nite.

Corollary 1. The niteness problem restricted to reset Mealy automata is decidable if and only if the periodicity problem restricted to OCA is decidable.

Notice that the situation described by this corollary is optimal: if the problem is decidable, Mealy automata is the right setting to prove this result and the decidability of the periodicity for OCA will be a consequence; if the problem is undecidable, cellular automata is the right setting to prove this result and the undecidability of the niteness problem will be a consequence. The remainder of this paper is dedicated to prove that computational phenomena do appear inside the dynamics of permutive OCA, advocating for the undecidability of the problem. Conjecture 1. The niteness problem is undecidable. Given a permutive OCA, we show how to build a reversible OCA that can simulate every spacetime diagram of the original. The idea is to slow down the computation by delaying each state using a xed number of distinct copies per state and perform a transition only after going through every copy. Adjacent columns of states are then desynchronized to obtain reversibility as a consequence of permutivity. Denition 1. Let F be an OCA (X, 1, δ) and let

1 ≤ k ≤ n -1. The (n, k)- embedding F of F is the OCA (X , 1, δ) where X = 1≤i≤n {x (i) :
x ∈ X} and such that: α) , y (β) = δ(x, y) (1) if α = n and β = k x (1+(α mod n)) otherwise Fig. 2 illustrates the embedding.

∀x (α) , y (β) ∈ X δ x (
Lemma 5. The (n, k)-embedding of a permutive OCA F is reversible.

Proof. The local rule of the inverse OCA τ can be dened by τ (z (1) , y (k+1)) = x (n) for all x, y ∈ X such that δ(x, y) = z; τ (x (i) , *) = x ((i-1 mod n)+1) otherwise. The idea of the embedding is to desynchronize adjacent columns by shifting them vertically of some constant k between 1 and n -1. When two consecutive columns are not correctly arranged, they do not interact. Lemma 6. There exists an injective transformation of spacetime diagrams of F (in X Z×N) into spacetime diagrams of F (in X Z×Z): for every c ∈ X Z , there exists a unique conguration c ∈ X Z for F with

∀m ∈ Z, p ∈ N, ∀1 ≤ i ≤ n, F m(n-k)+pn+i-1 (c) m = (F p (c) m) (i) x y z -→ x (1)
x (2) x (3) z (1) z (2) z (3) y (1) y (2) Remark 1. If the OCA has a particular state 0 such that δ(x, 0) = x for every

y (3)
x ∈ X, we can keep a unique version of state 0 by identifying the 0 (i) as a unique state 0 where δ (0, y (k)) = (δ(0, y)) (1) δ (0, *) = 0 where * can be anything

δ (x (i) , 0) = x (1+(i mod n))
This lemma allows to transfer results from F to F , in the sequel we prove the following result for permutive OCA and obtain it for reversible ones:

Reachability problem Given a reversible OCA with a quiescent state 0 ∈ X and two states x, y ∈ X, decide if y appears in the spacetime diagram generated by the initial conguration ω 0.x0 ω . Theorem 1. The reachability problem is undecidable for reversible OCA.

Main construction

To prove the theorem, we need to embed some Turing complete computation into permutive OCA. This goal is achieved by simulating multi-head walking automata. This section describes the simulation of these automata by permutive OCA.

Multi-head walking automata

A multi-head walking automaton consists of a nite number of heads on the discrete line, each one of them provided with a state out of a nite set. At each step, they can only interact (read the state) with the heads that share the same cell, update their state and move. Initially, all the heads are in position 0.

Denition 2. A k-head walking automaton is dened by

(Σ, I, F, (f i , g i) 1≤i≤k)
where Σ is a nite alphabet that does not contain ⊥, I ∈ Σ is the initial state, F ⊆ Σ is a set of nal states, ∀i, f i : (Σ ∪ {⊥}) k → Σ and ∀i, g i : (Σ ∪ {⊥}) k → {-1, 0, 1} are the update functions for the state and the position.

A conguration of this automaton is a k-tuple a = (a i , s i) 1≤i≤k ∈ (Z × Σ) k and its image conguration is

(a i + g i (b i), f i (b i)) 1≤i≤k where ∀1 ≤ i ≤ k, b i (j) = s j if a i = a j and ⊥ otherwise.
Starting from conguration (0, I) k , the automaton computes the successive images and stops only if the position of every head is 0 and their states are nal.

A multi-head walking automaton can mimic a counter with 2 heads. Turing completeness is achieved by simulating 2-counter Minsky machines.

Proposition 2. The halting problem of 4-head walking automata is undecidable.

Finite congurations

Every nite conguration can be written c = ω 0.u 0 0 ω for some u 0 ∈ X n , n ∈ N, hence its successive images can only be

F k (c) = ω 0v k .w k 0 ω for some v k ∈ X k , w k ∈ X n ,
that is: the nite non-quiescent word extends to the left, one cell at each step. We also have the following result.

Lemma 7 (Coven et al [START_REF] Coven | Prevalence of odometers in cellular automata[END_REF]). In the spacetime diagram associated to a nite conguration, every column is periodic.

P-signals

Most cellular automata constructions use signals as elementary geometrical building blocks. Unfortunately, it is not possible to embed a classical signal in a permutive OCA nor is it possible to directly simulate multi-head automata. We provide P-signals as a technique to replace signals of speed k by an (n, k)-embedding of the front line of the spacetime diagram of the XOR with only one non-zero cell. This will eectively allow to send a signal through space in a reversible permutive OCA.

For our construction, we x n = 7, hence we can use speeds from 1 to 6. Due to remark 1, the states of these signals will be denoted Z 8 = {0, 1, 2, 3, 4, 5, 6, 7}. Next lemma states that dierent speeds induce similar spacetime diagrams up to a vertical shift on each column. Lemma 8. Denote F k and F k the OCA corresponding to signals of speeds k and k and let c be the conguration ω 0.10 ω then we have

∀m ≤ 0, ∀p ≥ 0, F p k (c) m = F p-(k-k)m k (c) m .

2-recognizability

Our construction relies on the ability to identify some specic sets of spacetime positions. We achieve this goal by considering products of independent P-signals.

To avoid boring calculations, we rely on the following lemma to assert some regularity of P-signals and rely on the theory of p-recognizable sets of tuples of integers [START_REF] Bruyere | Logic and p-recognizable sets of integers[END_REF] to characterize these positions.

Lemma 9. The spacetime sequence ∆ : N 2 → Z n+1 of the (n, k)-embedding F of the XOR, where ∆(x, y) = F y (ω 0.10 ω) -x , is 2-recognizable.

Proof. The spacetime sequence ∆ of the (n, k)-embedding F is generated by the

2-substitution s : Z n+1 → Z 2
n+1 uniquely dened, as per Fig. ??, by

s(0) = 0 0 0 0 s    n . . . 1    = n • • • (k + 1) k • • • 1 n • • • (k + 1) • • • 1 0 • • • 0 n • • • • • • • • • 1 0 • • • 0
Indeed, the substitution rule is compatible with the local rule of the OCA.

Computation windows

Let F denote the OCA we are constructing. We use 4 P-signals of speeds 2, 3, 5 and 6 as foundations of F they allow us to build computation windows. Let c be the initial conguration which is null everywhere except for c(0) = (

We use Lemma 9 twice for each of the following lemmas, that is, we have a characterization of the set of positions where some specic state pairs appear. Both lemmas are illustrated in Fig. 3, 4 and 5.

Lemma 10.

∀m ≤ 0, p ≥ 0,

F p (c) m = (1, 0, _, _) F p (c) m+1 = (0, 3, _, _) ⇔ ∃h ∈ N * , m = -8 h p ≡ -3m -1[-14m]
Lemma 11.

∀m ≤ 0, p ≥ 0,

F p (c) m = (_, _, 7, 6) F p (c) m+1 = (_, _, 5, 0) ⇔ ∃h ∈ N * , m = -8 h p ≡ -12m -1[-14m]
Hence we add a fth layer using alphabet {0, 1} with the rule: δ 5 ((1, 0, _,_,x),(0,3,_,_,_)) = 1x δ 5 ((_, _,7,6,x),(_,_,5,0,_)) = 1x δ 5 ((_, _,_,_,x),(_,_,_,_,_)) = x otherwise. Actually, the same arguments work for columns -2•8 h , h ∈ N * and -4•8 h , h ∈ N * , hence we use them all. We therefore call computation windows the vertical segments in the spacetime diagram where the fth layer contains 1:

(m, p) in a computation window In light gray, speeds 2, 3, 5 and 6 Psignals together allow to draw the whole computation windows.

⇔ ∃h ∈ N * , m = -2 h , p ≡ p[14 • 2 h] and 3 • 2 h ≤ p < 12 • 2 h .
Fig. 6. The heads are supported by speed 4 P-signals that pass through the computation windows. The windows are large enough so that this property remains even after they are shifted up or down. Fig. 7. When the head arrives in a computation window, it is here shifted upward, then upward again and downward in the third window. The state also changes then (red, later blue, orange and blue again). In light gray, another head whose position does not change.

Computing heads

Every head of the walking automaton is simulated on a new layer. It is composed of a support that is mainly a speed 4 P-signal, and an internal state that belongs to the set of states Σ of the walking automaton. We need 4 heads, hence there are 4 additional layers (6 to 9).

The idea is that the heads move like speed 4 P-signal carrying internal states until they reach a computation window (as illustrated in Fig. 6). Then, depending on the context, they update their internal state and eventually shift upward or downward. Each shift corresponds to a move of the head of the walking automaton. Hence its position is encoded by the global shift applied to it, call it the height of the head.

More formally, each layer representing a head uses the alphabet ([1..7] × Σ) ∪ (0, ⊥). Outside computation windows, the rst component follows the rule of speed 4 signals, and the second component is maintained if possible or otherwise taken from the right neighbor.

Suppose now that we compute the new state of cell m at time p with (m, p) inside a computation window. Denote by x, y and z the states of cells (m, p), (m + 1, p) and (m, p + 1) in the spacetime diagram. The following rules apply to layer 6 (the same applies for other layers):

if y 6 = (0, ⊥), then apply standard rules. if y 6 = (0, ⊥), look at every other layer where the support state is the same and apply f 1 and g 1 , the update functions of the walking automaton, with these states. If the result of g 1 is -1 (resp. 0, 1), apply the rule of a speed 3 (resp. 4, 5) signal to the rst component. If the support of z 6 is not 0, then the internal state is given by f 1 .

Simulation

Finally, the OCA we build has 9 layers : c(m) = (0, 0, 0, 0, 0, (0, ⊥), (0, ⊥), (0, ⊥), (0, ⊥)) elsewhere. First note that the height can vary of at most 1 each time the head crosses a column -2 h , h ∈ N, hence: Lemma 12. Given any simulating head, while its height is between -h and h in column m = -2 h , h ∈ N, every non (0, ⊥) value of the layer in this column is inside a computation window. This means that each head has to apply the update rule when arriving in column -2 h , h ∈ N. Now check that every time it does, one step of the computation of the walking automaton is simulated. The main point is to ensure that two heads of the walking automaton are on the same cell at step h if and only if the support of their simulating heads coincide on column 2 h -1. This is true since, for any head whose height is s, its support takes value 1 exactly in cells (2 h -1, p) with p ≡ 4 • (2 h -1) + s [7 • 2 h]. This property is due to the XOR rule, with the (7, 4)-embedding. Fig. 7 illustrates this behaviour with two heads (one does not move to simplify the representation). This completes the simulation and the proof of theorem 1.

One step further

Orbit periodicity problem Given a reversible OCA with a quiescent state 0 ∈ X and a state x ∈ X, decide if the spacetime diagram generated by the initial conguration ω 0.x0 ω is periodic. Theorem 2. The orbit periodicity problem is undecidable for reversible OCA.

If the computation halts, the windows and the 4 P-signals that help determine the computation heads keep progressing eternally. To reach periodicity, it is necessary (and enough thanks to Lemma 7) to kill them all. It is possible to do so by giving killing orders to the heads. At the halting step h 0 , each head is given the responsibility to kill one of the P-signals while sacricing itself. They have to slow down or speed up to meet the corresponding P-signal. Again, we use Lemma 9 to prove that the meeting can happen on column 2 h0+1 with a local context that does not happen elsewhere.

Fig. 1 .

 1 Fig. 1. linking reset Mealy automata to permutive OCA

4

 Computing with permutive OCA As shown in Fig 1, the time goes up in every representation of this paper.

Fig. 2 .

 2 Fig. 2. The (3, 1)-embedding is given by the transformation of the local rule (to the left). The space-time diagram of the XOR OCA with a unitary conguration (at the center) is transformed into a space-time diagram of a reversible OCA (to the right).

Fig. 3 .

 3 Fig. 3. Speeds 2 and 3 P-signals determine the positions of the lower points of the computation windows as stated in Lemma 10.

Fig. 4 .

 4 Fig. 4. Speeds 5 and 6 P-signals determine the positions of the upper points of the computation windows as stated in Lemma 11.

Fig. 5 .

 5 Fig. 5.

 4 P-signals to determine the computation windows on the fth layer, and 4 to simulate the 4 heads of the Turing universal walking automaton. The initial conguration is the nite conguration c with c(0) = (1, 1, 1, 1, 0, (1, I), (1, I), (1, I), (1, I))