
HAL Id: hal-01557048
https://univ-orleans.hal.science/hal-01557048

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Implicit Parallel Patterns for Geographic
Information System

Kevin Bourgeois, Sophie Robert, Sébastien Limet, Victor Essayan

To cite this version:
Kevin Bourgeois, Sophie Robert, Sébastien Limet, Victor Essayan. Efficient Implicit Parallel Patterns
for Geographic Information System. International Conference on Computational Science (ICCS 2017),
Jun 2017, Zürich, Switzerland. pp.545-554, �10.1016/j.procs.2017.05.235�. �hal-01557048�

https://univ-orleans.hal.science/hal-01557048
https://hal.archives-ouvertes.fr

This space is reserved for the Procedia header, do not use it

Efficient Implicit Parallel Patterns for Geographic

Information System

Kevin Bourgeois1,2, Sophie Robert1, Sébastien Limet1, and Victor Essayan2

1 Univ.Orléans, INSA Centre Val de Loire, LIFO EA4022, Orléans, France
(kevin.bourgeois, sophie.robert, sebastien.limet)@univ-orleans.fr

2 Géo-Hyd (Antea Group), Olivet, France
(kevin.bourgeois, victor.essayan)@anteagroup.com

Abstract
With the data growth, the need to parallelize treatments become crucial in numerous do-

mains. But for non-specialists it is still difficult to tackle parallelism technicalities as data
distribution, communications or load balancing. For the geoscience domain we propose a so-
lution based on implicit parallel patterns. These patterns are abstract models for a class of
algorithms which can be customized and automatically transformed in a parallel execution.
In this paper, we describe a pattern for stencil computation and a novel pattern dealing with
computation following a pre-defined order. They are particularly used in geosciences and we
illustrate them with the flow direction and the flow accumulation computations.

Keywords: Parallel programming, Implicit parallelism, Performance, GIS

1 Introduction

During the last decades, fast progress in capturing and measuring methods in every scientific
domains made the amount of available data grows in a dramatic way. Such a revolution allows
the scientists to refine their models and simulations. However computing on such amounts of
data requires the use of powerful computers, such as clusters, to get reasonable run-times. One
of the main locks in many sciences is to gather in a single man or at least in a single team, high
skills in both the specific scientific domain and in high performance computing. One solution
to address this issue consists in providing to scientists, who are able to program in sequential
way, tools which help them to (semi-)automatically derive efficient parallel programs from a
program that hides, more or less, technicalities due to parallelism. Currently, great efforts are
done in computer science to define efficient tools to help non-HPC experts to program efficiently
parallel computers. There are mainly two families of solutions. On one hand are dedicated
libraries that provide turnkey implementations of classical and domain-specific functions. On
the other hand, skeleton programming or pattern programming provide an abstract model of
an algorithm that can be customized and transformed into a parallel program. Often, these

1

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

approaches are associated with a Domain Specific Language (DSL) to describe, in a familiar
way for the scientist, the skeleton and its inputs.

Geosciences are no exception and amount of data is a major concern even for SMEs or
public labs working on geographic information systems (GIS) to conduct environmental studies
like soil erosion or analysis of the water cycle. The work presented in this paper addresses
the implicit parallelism for geoscientists. It focuses on two parallel patterns widely used when
computing on large GIS represented by 2D rasters. However this work takes place in a more
general project that aims at providing an implicit parallel computing framework dedicated to
geoscientists. This framework illustrated Figure 1 relies on implicit parallelism associated to a
DSL. It is split into three main layers from a high level user interface to program the algorithm
to a low level data system to efficiently manage data on disks. These layers are connected by
an implicit parallelism pattern layer. This framework targets computer architectures such as
clusters of small or middle size (i.e. from 10 to 100 nodes) as those frequently found in SMEs
or scientific labs.

DSL of
Implicit

Parallelism

Parallel
Pattern

Parallel
Pattern

Parallel
Pattern

D
istrib

u
ted

S
torage

U
ser

view

of
D

ata

P
C

C
lu

ster

P
arallel

P
rogram

U
ser

V
iew

Figure 1: Implicit Parallel Framework for GIS

At the top level, the geoscientist has a classical view of his/her GIS and programs in a
classical way using a DSL embedded in Python. This DSL is based on libraries to compute on
raster and/or vector datasets using some predefined patterns. At the low level, the datasets
are stored in a distributed file system and the framework provides a layer that allows the user
to efficiently select data he/she requires as well as to store intermediate results. At the middle,
a layer is responsible to make the connection between the two ends of the framework and
to produce efficient parallel programs from the ones written by the user. This middle layer
relies on the implicit parallel pattern programming interface written in C++ and using MPI
parallel library. This middle layer uses the data layer library to access and store data. Different
patterns have been implemented corresponding to different classes of algorithms frequently used
in geosciences. They are optimized to efficiently parallelize programs according to their class.
From the program written by the user with the DSL, it is possible to determine the patterns
to apply in the parallel program and a C++ program is automatically derived using them.

2

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

In this paper we present two patterns which represent very large classes of programs usually
used in geosciences. The first pattern is known as stencil computing and consists in computing
the value of a cell in a raster according to a bounded neighborhood around the dataset. Such
a pattern is widely used for computing simulations in an iterative way (i.e. the computation is
repeatedly applied at each time step). Computations on GIS we focus on, are less iterative but
are applied on very large dataset. The usual way to help the programmer in implementing such
a calculation is to provide a pattern where he/she describes functions (also called kernels) that
must be applied on the cell and the neighborhood shape. From these information it is possible
to generate efficient parallel programs that do the computation.

The second pattern is more specific to geosciences and consists in computing cell values in
an order defined by the topology of the terrain on which the calculation is performed. One of
the typical computations is the flow accumulation that consists in computing for each cell of
a terrain how many cells it drains according to the flow direction. Such computation is not
easy to parallelize efficiently since the value of a cell depends on an arbitrary number of cells
which could be located anywhere in the terrain. Our pattern aims at hiding the parallelism to
programmers by providing a way to describe such a computation by means of a function and
a pre-order describing the dependencies between cells. As for the stencil pattern, it is possible
to derive an efficient parallel program from these information.

The rest of the paper is organized as follows. Section 2 presents some related work. The
two implicit parallelism patterns are described Section 3 and the experimental results are given
Section 4. Finally, Section 5 concludes the paper and draw some perspectives.

2 Related Work

Many problems in the geocomputation domain use raster datatype, which is a regular mesh
with one or many layers and vector datatype which is a geometric shape representing various
geographic elements such as rivers. The steady increasing size of the rasters and the computa-
tional complexity of the problems require the use of parallel computers which are difficult to
program.

The GIS specialists are used to code their algorithm in a sequential way, but the growing
amount of data requires to parallelize their codes. Most of the parallel tools focus on raster
datatype. For example, the PaRGO library [14] tries to hide most of the parallel aspects like the
communications and the load-balancing by encapsulating the parallel details, it supports local
and global operations and targets all architectures. It allows the user to implement operators
that can be applied in parallel over the mesh. pRPL [10] is another raster parallel library
implemented in C++ and template based. It supports local and global operators, and allows
various decomposition (like the quad tree decomposition). These two libraries are implemented
in C++ and make use of templates which can be very difficult for a GIS specialists to understand
as he/she is more familiar with higher level language like Python used in ArcGIS. Hence,
alternatives can be found like the RasDaMan database [2] that is an array database system to
make terrain analyses with a query language close to SQL called rasql. Moreover, most of the
GIS software, like ArcGIS, SAGA GIS or Grass, propose built-in parallel implementations of
terrain analysis problems, like TerraFlow [1] in Grass to compute flow accumulation on massive
raster, or the IDW interpolation [12] in ArcGIS. Other tools can be added to GIS software or
used alone like TauDEM [16] to compute watershed and flow accumulation on large rasters.

A way to hide most of the parallel complexity is to use skeleton programming. The skeleton
programming [3, 15] allows to manipulate high order function that can be interpreted as a
program template that can be parametrized in sequential problem-specific code, and which can

3

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

be optimized for specific platforms. Those solutions hide most of the parallelization as they
usually hide the navigation over the data structures and allow very good performances. The
skeletons proposed by Murray Cole are very recurrent parallelization schema, like map which
applies a function on each element of an array. Skeletons can be nested in order to create
more complexes skeletons to address more complexes problems. The MapReduce library of
Google [7] has resurfaced the skeleton with very good performances for large data. There is no
real formal description of what a skeleton is and several implementations of skeleton libraries
can be found, for example FastFlow [5], still in development that aims to support highly efficient
stream parallel computation for the shared-memory architectures. SkelGIS [4] is a pattern based
library for efficient scientific simulations on mesh initially design for GIS purposes.

Our framework uses something similar to the skeleton, which we call patterns, but they
do not hide completely the parallelization and cannot be nested as the aim is to provide a
higher level tool to hide the the complexity of parallelism and unlike FastFlow we target the
distributed-memory architecture

One can also restrict the range of problems to parallelize by identifying a specific domain of
application. The domain specific language (DSL) is a programming language design to address
the specific problems of a domain. Because they address a restricted range of problems, a lot
of optimizations can be done. Liszt [9] is a DSL for solving partial-differential equations on
general mesh in parallel, it implements a subset of Scala [13] running thought the JVM. Few
DSLs exist in geosciences [8, 6, 11] but they do not aim at parallel architectures.

Our framework tries to take advantages of each solutions presented above. By defining a
DSL on top of the layers, we make sure that our framework is easy to use and fairly general to
meet a lot of problems. The patterns layer allows us to take advantages of skeleton programming
and ensure good performance by taking care of the communications and the load-balancing.

3 Parallel Patterns

One way to smooth out the difficulties of designing a parallel program, especially considering the
complexity of current architectures, is to use of patterns. By separating the data distribution,
the communications and the synchronizations of parallel solutions, common parallel patterns
can be isolated and applied on various problems. This idea is similar to well-known design
patterns [17] in the sequential world. Thus, the pattern is an abstract model for a class of
algorithms. It can be specialized from specific functions brought by the scientist. Then, the
pattern is automatically transformed into a parallel program executable on a parallel computer.

For GIS, we identified two very important patterns and implemented them. The first one
is the stencil pattern which corresponds to a very common computation schema. It is widely
used in many domains like image processing or numerical simulations. In Geosciences, it is used
for computations like the flow direction algorithm or simulations based on cellular automata.
Stencil based computation has been intensively studied for several decades. The second pattern
has not really been identified as such in the literature but many algorithms rely on it. We called
it the Pre-Defined Dependency Pattern (PDD) as the cell computation follows an order based
on dependencies between cells. It leads to a more complex parallel schema. This pattern can
be found in the flow accumulation algorithm or in the watershed algorithm for example.

We need some preliminary notations and definitions to describe our patterns. In GIS, the
initial data is a terrain considered as a regular mesh. Several values can be assigned to each point
of this terrain (elevation, direction, ...). In this paper, we consider that all values are stored in
different meshes that have the same structure. Thus, we call DT the domain associated to a
terrain (i.e. the mesh). A cell c is a point of DT and for a mesh m, m(c) denotes the value

4

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

attributed to c. Classically, c is a pair (i, j) that defines a point of the terrain DT .
As, we focus on distributed architecture, the different meshes are distributed on the different

processes. Each process manages a sub domain D ⊆ DT . To optimize parallel computation,
each mesh is divided with overlapping parts. Each process owns additional cells called ghost
cells and denoted by G illustrated in the figure 2 with the cells in grey. Finally, we denote
O ⊂ D the cells which are shared with another process.

64 58 55 22 31 24

69 53 44 37 38 38

74 67 56 49 46 50

78 72 69 71 58 49

(a) Local data with a ghost line in gray

→ → ↘ ↓ ↙ ↓

↘ ↘ ↘ ↓ ↓ ↓

↘ ↘ ↘ ↓ ↓ ↙

(b) Computed Directions

Figure 2: Ghost cells on the flow di-
rection example

1 Function STENCIL(min:mesh, Nsize:int,
fupdate:func, fborder:func, nbiter:int):mesh is

2 mesh mout;
3 for i=1 to nbiter do
4 Exchange Ghosts(min);
5 foreach Cell c at the borders of D\G do
6 mout(c) = fborder(c,min);
7 foreach Cell c ∈ D\G not at the border do
8 mout(c) = fupdate(c,min);
9 min = mout;

10 return mout;

Algorithm 1: Stencil Pattern

3.1 Stencil Pattern

The stencil pattern consists in computing for each point of a matrix, a value depending on the
values of its neighbors. Thus, a kernel convolution matrix or a mask is applied on the matrix.
The mask size indicates the size of the neighborhood needed to update a point.

The stencil computation is defined by means of the neighborhood size Nsize of a cell, two
functions fupdate to be applied on each cell of the mesh and fboundary to be applied on the cells
at the border of the mesh (i.e. those whose neighborhood is not complete). The two functions
are implemented assuming that all the data are local to the process. The last parameter nbiter
is the number of time the stencil must be applied. Algorithm 1 shows how these parameters
are used in the pattern.

The stencil pattern can be used to implement the flow direction algorithm. In this case, the
size of the stencil is 1 (i.e. the neighbors are the 8 cells surrounding a cell c), fupdate(c) finds
the lowest cell among the 8 that surround c. The fborder function is a special case of fupdate
when the neighborhood contains less than 8 cells. In input min is a Digital Elevation Model
(DEM) and as result mout is a mesh of directions such that mout(c) indicates where c flows.

Concrete parallel implementation. Stencil computation only needs a bounded neigh-
borhood to compute the value of a cell. Its parallelization is quite simple and efficient. Indeed,
it is sufficient to divide the data set into overlapping parts such that each processor gets all
the data it needs to perform its computations on D independently as illustrated Fig. 2. The
pattern computes the result mesh only on its domain D. Thanks to the ghost cells G it is able
to access to the complete neighborhood of the D boundary cells.

The concrete stencil model requires the data including ghosts to be already distributed.
Then the constructed program from the user’s functions and neighborhood description is ap-
plied on the D data as described Algorithm 1. The parallelization consists in exchanging the
ghosts when the iterative version is necessary. The line 4 is automatically transformed into a
communication phase to send to neighbor processes mout of the cells in O and to receive in G the

5

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

mout of the O cells of these neighbor processes. This phase depends on the initial distribution
and on the neighborhood size to update each cell. We implemented the three classical strategies
to distribute a mesh, per bands of lines, per bands of columns and per blocks. In addition,
to take into account the crucial load balancing when data can be partially sparse because of
no-data, we implemented also a round-robin distribution to assign bands or blocks in a circular
order to the processes.

3.2 The PDD Pattern

The Pre-Defined Dependency Pattern addresses a class of algorithms were the value of a cell
depends on the input data and the value of several other cells. For example, the computation
of the flow accumulation of a cell c in a terrain, requires the knowledge of the direction flow and
the value of the accumulation flow of each cell which flows to c. The computation consists in
evaluating the cells without dependencies first and then iteratively in evaluating the cells which
depend only on already computed cells. Such computations are very common in geosciences but
their parallelization is more complicated than stencil computations since some cells may need
the value of other cells located on different processes which induces communications. The PDD
pattern relies on a pre-defined dependency relation between cells that is non-cyclic. Moreover,
for each cell, the cells it depends on, must be included in a bounded neighborhood. Thanks to
these two properties, we are able to provide an efficient implicit parallelism pattern for these
kind of algorithms.

Let min denote the input mesh and mout denote the result mesh. The dependencies is
given by a boolean function r(c, c′,min) which tells if the cell c is dependent of c′. From r
it is possible to compute a dependency coefficient nd to each cell c of DT which is the num-
ber of c neighboring cells which have to be computed before c. The neighborhood definition
is the same as the stencil pattern one and is defined from the Nsize parameter. The algo-
rithm consists then in computing the value of the cells whose nd = 0 and in decreasing nd

of the cells c′ such that r(c, c′,min) = true. The algorithm stops when all the nd coefficients
are zero. Therefore, the user needs only to define two functions. The boolean function r
defining the dependency between two cells. The updating function fupdate(c,min,mout) that
computes out(c) from the cells on which c depends and returns Sd(c) the set of cells which
depend on c. Then the computations are as follows where N(c) designed the c neighborhood

1. ∀c ∈ D nd(c) = |{c′ ∈ N(c)|r(c, c′,min)}| 2. ∀c s.t. nd(c) = 0

• Sd(c) = fupdate(c,min,mout)

• ∀c′ ∈ Sd(c) nd(c′)− = 1

Finally, from fupdate and r, the abstract model illustrated Algorithm 2 becomes a concrete pro-
gram and it can be transformed into a parallel implementation. In this algorithm the function
fdep(c,min, r) computes the nd of c. This function can be automatically derived from r.

This pattern can be used to implement the flow accumulation algorithm supposing that min

the flow directions are already computed. In this case, the neighborhood size is 1 and N(c) of
a cell c consists of the 8 surrounding cells. The two functions are defined as follows

• r(c, c′,min) =

∣∣∣∣ true if min(c′) indicates c
false otherwise

6

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

• fupdate(c,min,mout) :

∣∣∣∣ mout(c) =
∑
{c′∈Nc|r(c,c′,min)}mout(c

′)

Sd(c) = {c′′|r(c′′, c,min)}

1 Function PDD(min: mesh, fdep:func, fupdate:func) : mesh is
2 mesh mout; // The output value

3 mesh nd; // The dependency for each cell

4 queue O ← ∅;
5 foreach Cell c ∈ G do
6 nd(c) = 0;
7 foreach Cell c ∈ D do
8 nd(c) = fdep(c,min, r);
9 if nd(c) == 0 then

10 O ← O ∪ c;

11 bool over = false;
12 while (not over) do
13 while O 6= ∅ do
14 c ← pop(O);
15 Sc = fupdate(c,min,mout);
16 foreach cell c′ ∈ Sc do
17 nd(c′)− = 1;
18 if nd(c′) == 0 and c′ ∈ D then
19 O ← O ∪ c;

20 Exchange Ghosts(mout);
21 Send({nd(c)|c ∈ G});
22 Receive({nup

d (c)|c ∈ O);
23 foreach cell c ∈ O do
24 nd(c)+ = nup(c);
25 if nd(c) == 0 then
26 O ← O ∪ c;

27 return mout;

Algorithm 2: Pre-Determined Dependencies Pattern

Concrete parallel implementation. As for the stencil pattern, the mesh is distributed
either per bands or per blocks with the round-robin order. The initial distribution is supposed
to be done with ghost data so that fdep and fupdate can be applied on each local cell without
communications. At the iteration end, when all the possible cells are computed, the communi-
cations are carried out. The line 20 is similar to the ghost exchange in the stencil pattern to
update mout neighborhood of the border cells. The lines from 21 to 26 describe the nd updating.
Indeed, when a cell of O is computed, it can change the nd value of G cells. This modification
needs to be sent to the owner processor so that it can compute the new value nd of the O cells
(line 26). Therefore the concrete implementation consists in replacing the lines 20 to 22 with
the code to express the corresponding communications. This automatic part depends only on
the Nsize parameter and of the initial distribution.

PDD pattern with memorized order. If the pattern is used repetitively, as the depen-
dency does not change, the pattern can be considerably improved. Indeed, in the first pattern
application, it is possible to memorized the order in which the cells were updated. It is suffi-
cient to replace the lines 10, 19 and 26 with a way to memories which cells has been added. In

7

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

this way the new pattern is reduced to the cell updates and the ghost exchanges of mout. All
calculations for nd dependency coefficients are no longer necessary.

4 Results

We used the C++ templates to automatically transform our patterns into a C++ implementa-
tion using the MPI library. For example, we designed a datastructure called mesh<Type, Nsize,
n, m> where the parameters respectively characterize the mesh data type, the neighborhood
and the block dimensions. This structure allows to deal with the different data distribution and
communication phases. The DSL will provide an easy way to manipulate the mesh without
the need of all the parameters of the C++ implementation. Thus, the user will only provide
the dataset associated with the mesh and we will automatically find the parameters as the
distribution method, the size of the blocks...

To test the performance of the patterns, we compared them to two handmade implementa-
tions in C++ using the MPI library. The flow direction computation has been used to illustrate
the stencil pattern and the flow accumulation computation for the PDD pattern.

We used the compiler GCC 6.1.0 with optimization flag set to -O2 and OpenMPI 1.10.2.
All tests have been done on the Centre de Calcul Scientifique en Région Centre (CCSC). The
cluster runs on the Scientific Linux Release V6.6. It is composed of 48 nodes where each node
hosts 20 CPU’s Intel Xeon E5-2670 2.5Ghz, 64Gb of memory. The network is an InfiniBand
40G/s. We used 4 nodes for the tests with 64 cores. We done our tests on a 60001 × 90001
matrix of 32-bit integer (around 20GB). The matrix represents Asia and contains a lot of no
data values at the bottom that may cause load unbalancing. Every run has been done height
times and averaged. The maximum deviation was less than 2%.

We chose to split the meshes into bands of lines. Because of ghost exchanges, a distribution
per blocks will generate much more communications. Two splitting have been done, one with 50
lines per bands and an other with 100 lines. With our configuration, the best splitting proved
to be the splitting with 100 lines per bands. Thus, we present only these results. Let notice
that beyond 64 processes, the band height should be decreased in order to ensure that each
process deals with at least one band of lines of our dataset.

The results obtain for the stencil pattern are shown in the figure 3. The performance is very
similar to the handmade version. Thus, the pattern genericity does not generate additional
costs. As we mainly focus on the PDD pattern, we do not dedicate much space for the stencil
performance.

The figure 3 presents the results of the PDD pattern denoted by PDD against the handmade
version denoted by H in log scale to highlight the speed-up. The algorithm tested is the flow
accumulation algorithm. The overhead of PDD is about 8% compared to the H except for 32
cores when the overhead is about 17%. The pattern needs to be general, so some conditions have
to be done in the patterns which can be excluded in the H version. However, the two versions
are still very closed. Moreover, we can see that the speed-up is linear which was not a foregone
conclusion since the computation is less regular than a stencil one. The figure 4 presents the
results of the PDD patterns against the pre-computed order version. This last is decomposed
into two parts, the PDDo part, which is the order computation algorithm and PDDk−o part
which is the PDD pattern when the cell order is known. We can see that the PDDo part is
slower than the PDD version, while it only computes the order. This is due to data structure
(a map of vector) used to store the order of the cells, the synchronizations and the frequent
access to it. However, the PDDk−o part, is really faster compared to the PDD version by
almost 68%. Hence, the PDD version is the most useful version when the user only needs to

8

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

2 4 8 16 32 64

10

100

Cores

T
im

e(
s)

H PDD version
PDD version

Stencil

Figure 3: Time comparison between hand-
made algorithm and PDD algorithm

024 8 16 32 64

10

50

90

130

170

Cores

T
im

e(
s)

PDD version
PDDo part

PDDk−o part

Figure 4: Time comparison between PDD al-
gorithm and ordered PDD algorithm

run the pattern once, but, if he/she wants to re-run the pattern with various parameters or on
slightly different data but with the same dependency between cells the PDDk−o proved to be
really interesting because the cells order is computed only once.

5 Conclusion and Perspectives

In this paper, we presented two patterns as elements of a general implicit parallel framework for
GIS. If the stencil pattern is well-known, the PDD pattern is more innovative. We showed its
efficiency particularly in a repetitive process when the computation order has been memorized
during the first iteration. The perspectives of this work are numerous. Beyond new optimization
for our patterns, new versions are under development to take into account different machine
architectures (shared memory, GPGPU). Other patterns need to be added to address more
problems as the wavefront pattern for example. Moreover, pattern composition need to be
defined to express computations as a workflow. For example, in the PDD pattern, the nd

coefficient computation can be seen as a stencil computation. However, the cooperation between
the two patterns induce an additional cost because of extra data access. More generally, the
data distribution need to be specifically studied in order to help the user to choose the adapted
policy. Finally, these patterns are the first step for the creation of a layer based framework
to help GIS specialists to create parallel program easily. We want to develop a DSL based
on Python to completely hide the parallelism and the C++ templates to users. This DSL
associated to our patterns should offer a simple way for geoscientists to parallelize their data
treatments.

References

[1] L. Arge, J. S. Chase, P. Halpin, L. Toma, J. S. Vitter, D. Urban, and R. Wickremesinghe. Efficient
flow computation on massive grid terrain datasets. GeoInformatica, 7(4):283–313, 2003.

9

Efficient Implicit Parallel Patterns for Geographic Information System Bourgeois, Robert, Limet and Essayan

[2] P. Baumann. Rasdaman: Array databases boost spatio-temporal analytics. In Computing for
Geospatial Research and Application (COM. Geo), 2014 Fifth International Conference on, pages
54–54. IEEE, 2014.

[3] M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel program-
ming. Parallel computing, 30(3):389–406, 2004.

[4] H. Coullon and S. Limet. The sipsim implicit parallelism model and the skelgis library. Concurrency
and Computation: Practice and Experience, 28(7):2120–2144, 2016.

[5] M. Danelutto and M. Torquati. Structured parallel programming with core fastflow. In Central
European functional programming school, pages 29–75. Springer, 2015.

[6] O. David, W. Lloyd, J. C. Ascough II, T. R. Green, K. Olson, G. Leavesley, and J.R. Carlson.
Domain specific languages for modeling and simulation: use case OMS3. PhD thesis, International
Environmental Modelling and Software Society (iEMSs), 2012.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[8] P. Degenne, D. L. Seen, D. Parigot, R. Forax, A. Tran, A. A. Lahcen, O. Curé, and R. Jeansoulin.
Design of a domain specific language for modelling processes in landscapes. Ecological Modelling,
220(24):3527–3535, 2009.

[9] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen, F. Ham,
A. Aiken, K. Duraisamy, et al. Liszt: a domain specific language for building portable mesh-based
pde solvers. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, page 9. ACM, 2011.

[10] Q. Guan and K. C. Clarke. A general-purpose parallel raster processing programming library test
application using a geographic cellular automata model. International Journal of Geographical
Information Science, 24(5):695–722, 2010.

[11] N. Holst and G. F. Belete. Domain-specific languages for ecological modelling. Ecological Infor-
matics, 27:26–38, 2015.

[12] F. Huang, D. Liu, X. Tan, J. Wang, Y. Chen, and B. He. Explorations of the implementation of a
parallel idw interpolation algorithm in a linux cluster-based parallel gis. Computers & Geosciences,
37(4):426–434, 2011.

[13] M. Odersky and al. An Overview of the Scala Programming Language. Technical Report
IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

[14] C. Qin, L. Zhan, A. Zhu, and C. Zhou. A strategy for raster-based geocomputation under dif-
ferent parallel computing platforms. International Journal of Geographical Information Science,
28(11):2127–2144, 2014.

[15] F. Rabhi and S. Gorlatch. Patterns and skeletons for parallel and distributed computing. Springer
Science & Business Media, 2003.

[16] D. Tarboton. Terrain analysis using digital elevation models (taudem). Utah State University,
Logan, 2005.

[17] J. Vlissides, R. Helm, R. Johnson, and E. Gamma. Design patterns: Elements of reusable object-
oriented software. Reading: Addison-Wesley, 49(120):11, 1995.

10

	Introduction
	Related Work
	Parallel Patterns
	Stencil Pattern
	The PDD Pattern

	Results
	Conclusion and Perspectives

