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Abstract: In this paper, a two-layer predictive energy management strategy for hybrid electric
vehicles without an external recharge is introduced. The low-level layer exploits telemetry data
over a short-term horizon in a model predictive control structure that provides the engine torque,
but also the stop-start decision. The upper layer uses a tuning mechanism with a longer horizon
to calculate the MPC weighting factor that ensures a balance between the fuel and battery
consumption. An analysis of this upper-level tuning prediction horizon dependence on the drive
cycle characteristics is performed. The robustness with respect to state-of-charge and engine
torque estimation is also proven by a sensitivity analysis.
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1. INTRODUCTION

Fuel consumption optimization is a priority objective in
the automotive research, whose development during the
last years has witnessed an increased interest in hybrid
vehicles. The research work spans several fields related to
this topic: topology, dimensioning, modeling and control.
The latter tackles especially the energy management prob-
lem, which refers to the power distribution between the
engine and the additional power source.

There are currently numerous techniques in the literature
for the power distribution problem: dynamic program-
ming (off-line solution, it needs the entire drive cycle),
rule-based (Goerke et al., 2015), Equivalent Consump-
tion Minimization Strategy (ECMS), with its different ap-
proaches, such as Adaptive-ECMS (Musardo et al., 2005)
and Telemetric-ECMS (Sciarretta et al., 2004). Model pre-
dictive control (MPC) has gained in popularity during the
last years, it its deterministic form (Cairano et al., 2011),
(Lu et al., 2013) or stochastic (Ripaccioli et al., 2010),
(Josevski and Abel, 2014).

Current technologies allow the acquisition of future traffic
data and consequently, their exploitation within predictive
control strategies, with explicit reconstruction of the speed
profile or by the use of pattern recognition (drive cycle
profile, driving style). In (Bender et al., 2014) the future
target speed is reconstructed from the vehicle current
position and a database, whereas in (Mayr et al., 2011) a
cycle detection based on correlation analysis is performed.
The ability to capture transient characteristics, such as
abrupt changes, makes the frequency analysis a suitable
approach: in (Wang et al., 2012) a wavelet-based analysis

is used for feature extraction from accelerometer data,
whereas in (Liu et al., 2015) a metric that characterizes
speed fluctuations is defined using Fourier analysis.

This paper continues the previous work (Stroe et al.,
2016b), where an MPC - based torque split optimization
including stop-start mechanism has been introduced. It
is assumed that the vehicle speed can be foreseen up to
several kilometers and this prediction will be incorpo-
rated into a two-layer control structure, that work with
longer horizons for the higher decision layers. The low-
level controller handles the power distribution, which is
reduced to torque calculation in the absence of gearshift
optimization, and also the stop-start command. This prob-
lem is formulated as an MPC optimization, whose tuning
parameter is calculated at the upper level, that uses a
long-term prediction. The main contribution of this paper
is to present a method to calculate the penalty factor
in the MPC design as a sum of an average-based feed-
forward component, calculated over a prediction horizon,
and a SOC feedback corrective term. The influence of the
prediction horizon on fuel gain is analysed for different
drive cycles. The robustness with respect to torque and
SOC estimation is equally performed in order to complete
the sensitivity analysis of the proposed structure.

The paper is organized as follows: first, a powertrain
control-oriented model is introduced and next, an MPC
formulation is presented, for the torque distribution and
ICE stop-start, with a focus on the MPC tuning method.
The performance and robustness of the proposed strategy
are evaluated into a model-in-the-loop validation.



NOTATIONS

• ICE - Internal Combustion Engine
• EM - Electric Machine
• DCT - Dual-Clutch Transmission
• Ri - gear ratio engaged on ith shaft (includes neutral

definition), i ∈ {1 : odd, 2 : even}
• Ci - clutch status (0 - open, 1 - closed)
• Ni = min(Ri, 1) - used to define the case where one

of the shafts is decoupled
• Rf(Ri) - axle ratio corresponding to ith shaft

• rwice/em - ratio between the ICE/EM torque at wheel

level and the component (ICE/ EM) torque
• ratem - ratio between the EM and the corresponding

shaft where it is connected
• ωctrlice - idle speed or 0 rpm, in case of engine stop
• Rw - wheel radius

2. POWERTRAIN CONTROL-ORIENTED MODEL

Fig. 1. DCT hybrid configuration

Vehicle dynamics is expressed using a backward approach,
where the reference speed and acceleration are known
and from which the required torque can be determined.
Hence, the wheel torque demand can be calculated from
the velocity (v), environment data, such as slope (α), air
density (ρair) and vehicle parameters, such as the mass
(m), frontal area (Af ), aerodynamic drag coefficient (cd),
rolling friction coefficients (cr0, cr1):

Tw =
(1

2
ρairAfcdv

2 + (cr1v + cr0)mgcos(α)

+mgsin(α) +mv̇
)
Rw

(1)

A wheel level supervisory control is the most appropriate
for an HEV, where the EM can be connected to different
driveline positions. Shafts inertias and clutch dynamics
are neglected and, therefore, a static model for torque
and rotational speeds of the components is introduced,
as in (2)-(6). The purpose of the model is to define a
relation between the components torques and the total
torque demand and for the rotational speeds, a dependence
of velocity and driveline states (clutches states and gear
engaged).

The architecture considered here is a dual-clutch transmis-
sion hybrid with the EM connected to the even primary
shaft, as in Fig. 1. In (Stroe et al., 2016a) it was shown

Table 1. Hybrid DCT modes as functions of
clutches states and N2

C1 C2 N2 Case

0 0 0 standstill, sailing

0 0 1 electric driving, regenerative braking

0 1 1 hybrid or conventional, even gear engaged

0 1 0 charge during standstill

1 0 0 conventional driving, odd gear engaged

1 0 1 hybrid driving

1 1 0 take-off, charge during driving

that with a proper parametrization, this configuration can
represent all types of hybrid parallel architectures. For a
better understanding of the system and of the proposed
model, Table 1 summarizes the clutches states with respect
to functional modes. The variableN2 is introduced in order
to correctly define special cases when one of the shafts
is decoupled from the wheel (to charge the battery via
the ICE at standstill or during driving, with odd gear
engaged). For the present configuration, only the even
shaft is concerned, due to EM position. The engine is
disconnected from the drive not only for the case when
C1 = C2 = 0, but also for the charge at standstill, where
C2 = 1, but N2 = 0. Therefore, the ICE speed will be
defined by ωctrlice when C1 +N2C2 = 0, as expressed in (5).

Tw = rwiceTice + rwemTem (2)

rwice = Rf(R1)
R1C1 +Rf(R2)

R2C2 (3)

rwem = Rf(R1C1C2+R2)
(R1C1C2 +R2) ratem (4)

ωice = rwice
v

Rw
+ (1− C1 −N2C2)ωctrlice (5)

ωem = rwem
v

Rw
+ ratemC2 (1− C1) (1−N2)ωctrlice (6)

The battery SOC is the only considered state of the
system, for which an internal resistance model has been
retained in this paper. Its dynamics is described by the
integrator-like relation below, involving its open circuit
voltage (OCV ), internal resistance (R), battery capacity
(Qmax).

˙SOC = −
OCV(SOC) −

√
OCV 2

(SOC) − 4R(SOC)Pb

2R(SOC)Qmax
(7)

where Pb = π
30ωemTem + loss (ωem, Tem) is the battery

power.

The engine fuel rate is given as a non linear map with
respect to torque and rotational speed, but in view of
control design, an analytical expression with an explicit
appearance of the control variable, is needed. The vehicle
considered for this case-study is equipped with a turbo-
charged 1.2 L SI engine, whose fuel rate dependence on
torque is illustrated in Fig. 2, via a parametrization of
curves with respect to ωice. In this paper, a piecewise
linear approximation with respect to torque is introduced,
as expressed below:

ṁf = αj(ωice)Tice + βj(ωice), for j = 1 . . . Npart (8)

where Npart is the number of torque partitions.

3. MPC- BASED ENERGY MANAGEMENT

The focus of this work is the optimization-based decision
making for torque distribution between the engine and the
electric machine with respect to fuel consumption, for a
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hybrid vehicle without an external recharge. It is assumed
that the future vehicle speed profile can be extracted
from the navigation data system for a preview distance
of several kilometers.

3.1 Optimization criterion

The choice of the cost function should reflect the trade-
off between fuel and battery consumption. A local fuel-
friendly strategy would be to use the battery as much as
possible, but the absence of an external recharge would
imply to charge the battery later, via the engine, if the
regenerative braking phases are not enough. A cost func-
tion defined as a weighted sum of the two power sources
is given by PMP (Pontryagin’s Minimum Principle):

min
uk

Pfk + λkPek

Pfk = HLV ṁfk , Pek = OCVk ˙SOC
(9)

where k is the current step, HLV is the lower heating
value of the fuel, uk is the engine torque and λk is a
penalty, usually called equivalence factor. The choice of
the optimization criterion in the present developments
is inspired from the above design, but with the squared
values of the powers:

min
u

k+NMPC−1∑
i=k

P 2
f (i) + λ2

k (Pek(i)− Pemink(i))
2

(10)

where NMPC is the prediction horizon, u is a vector
with ICE torques of length NMPC and Pemink is the
electrochemical power minimal value. This latter element
is used as a displacement term, in order to properly include
the sign information of the electrochemical power, that
would otherwise be lost if only the squared value were
used.

3.2 Problem formulation

As mentioned in the first section, the only system dynam-
ics is the battery SOC, whose nonlinear model is defined
by (7). In this work, a linearisation at the operating point

is introduced, resulting into a Linear Time-Varying (LTV)
prediction model:

xk+1 = xk +Bkuk +Dk (11)

where x = SOC, uk = TICE(k), Dk is a residual term due
to linearisation. It can be noticed that the model is rep-
resenting practically an integrator-like dynamics, with Bk
and Dk time-varying, dependent on wheel torque demand
Tw(k) and EM rotational speed ωEM (k). The variations of
open circuit voltage and internal resistance with respect
to SOC are neglected during the prediction. With this
simplification, the optimization problem introduced before
can be formulated as a quadratic programming:

min
U

1

2
UTHU + FTU (12a)

s.t.

{
AineqU ≤ bineq
AeqU = beq

(12b)

With the definitions from (9) and (8), the expressions of
the matrices involved in the QP formulation are given
below:

Hk = ᾱ2
k + q2

kB̄
2
k (13a)

Fk = ᾱkβ̄k − q2
kB̄kU

max
k (13b)

where qk = λk
1

HLV
QmaxOCVk, B̄k = diag (Bk+i−1),

ᾱk =


αj1 (ωicek) · · · 0

...
. . .

...

0 · · · αjNmpc−1

(
ωicek+Nmpc−1

)
 ,

β̄k =
[
βj1 (ωicek) · · · βjNmpc−1

(
ωicek+Nmpc−1

)]
,

where the index ji denotes the fuel consumption region j
(8) for the ith element in the array Uk and Umaxk is an
array with the control upper bounds.

The constraints are defined with respect to physical limi-
tations of torque and power, but the SOC balance problem
needs to be handled separately. For a hybrid without an
external recharge, it is usually imposed to have at the end
at the drive cycle the same SOC value as in the beginning.
In this way, a fair comparison with a conventional vehicle
or between different strategies can be done. The solution
proposed here is the use of distance-varying limits:

SOCmink = SOC0 − (SOC0 − SOCmin) e
1− 1

1−
dk
dTot

SOCmaxk = SOC0 + (SOCmax − SOC0) e
1− 1

1−
dk
dTot

(14)

where SOCmin, SOCmax are the physical lower and upper
bound (usually take values of 20% and 90%, respectively),
dk is the current distance and dTot is the drive cycle
total distance. The purpose is to force the SOC trajectory
to approach the initial value, as the vehicle reaches its
destination. This condition implies the knowledge of the
total distance, which is not always realistic. An alternative
is the use of a reset distance, as depicted in Fig. 3.
In simulation, this can be set to standard drive cycles
distance, but in practice it can be extracted from the
driver’s history data. The constraints are hence expressed
as below:
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Tminice (ωice) ≤ Tice ≤ Tmaxice (ωice) (15a)

Tminem (ωem) ≤ Tem ≤ Tmaxem (ωem) (15b)

Pminem (ωem) ≤ π

30
ωemTem ≤ Pmaxem (ωem) (15c)

SOCmink − εk ≤ Xk ≤ SOCmaxk + εk (15d)

where εk is a slack variable used to soften the constraints,
in order to avoid infeasibility problems that may occur
when SOC variation range is too narrow.

3.3 ICE stop-start strategy

It is assumed that the drivelines states (gears and clutches)
are calculated at the supervisory level and used as inputs
by the MPC controller. The ICE can be stopped during
standstill and regenerative braking, but also during pure
electric traction. The inclusion of stop-start functionality
makes the optimization more complex due to the discrete
nature of the problem. In order to avoid the introduction
of an additional optimization variable, an a-posteriori
stop decision based on the sequence of calculated future
commands is introduced here.

Let tidle be the number of seconds of idling that translate
the cost of a restart, ∆topt the MPC sampling time and
cton the number of steps after an ICE restart. Then, the
condition to stop the engine is given by:

Uk (1 : Nstop) ≤ T thrice (16a)

cton > Nstart (16b)

where Nstop = tidle
∆topt

and T thrice is an ICE torque threshold

below which is preferable to stop the engine. The condition
(16b) is introduced in order to avoid frequent stops. With
this approach, the cost of a restart is implicitly included
by the length of the considered subsequence of commands.

The access to a sequence of future commands allows the
Non - step restart anticipation, in order to improve speed
tracking. If the value of the command on the position
1 + Non exceeds the ICE torque threshold, then a restart
command is activated. For the current study, a sampling
time of 0.5 s is used and thus, Non is set to 1.

4. TUNING METHOD

The penalty factor λ has a tremendous impact on the
performance and the main difficulty of tuning arises from

its dependence on the drive cycle. Given the lower and
upper bound of the command at each predicted step i, the
solution explored in the present study is to express λ as a
ratio of the 2 powers variations between these bounds, as
expressed below, where k is the optimization step:

λk,i = −
Pf (uk,i)− Pf (uk,i)

Pe(uk,i)− Pe(uk,i)
(17)

Moreover, the navigation data system can provide in-
formation about future traffic conditions over a longer
horizon than the one used for MPC. Thus, the proposed
solution can use an average-based calculation over this
penalty-adaption horizon, in combination with a propor-
tional feedback SOC control:

λk =
1

Nλ −Nstop
λ

k+Nλ−1∑
i=k

λk,i + kr (SOCsp − SOCk)

Nstop
λ - number of predicted steps of vehicle standstill

SOCsp - SOC setpoint
(18)

where λk,i is given by (17). The expression contains there-
fore, 2 terms: a feed-forward component (the average in
λk,i) and a feedback part (the proportional SOC control).
The purpose of the latter is to adjust the penalty factor
with respect to an SOC setpoint:

• if the trajectory is below the setpoint, λ increases,
thus penalizing more the use of the battery
• if the trajectory is greater than the reference, λ will

diminish and this will be translated into a greater use
of the battery.

In this case, the setpoint was chosen constant and equal
to the initial value. The goal is not to track a certain SOC
reference, but to allow the trajectory to freely vary and to
avoid overcharge or discharge.

The braking phases need to be included in the average
calculation, but in this case λk,i can no longer be expressed
as a ratio of differences, because these modes are pre-
imposed: the maximum possible energy is recovered and
the rest is dissipated in the friction brakes. Therefore, a
particular relationship is adopted in the present study:

λk,i =
P idlef

P regene (k|k + i)
, for Tw(k + i) < 0 (19)

where P idlef = HLV ṁ
idle
f and P regene (k|k + i) is the

predicted electrochemical power obtained by regenerative
braking.

With this formulation λ will decrease if braking phases are
anticipated. Thus, the use of the electric motor is encour-
aged if is possible to compensate the electric consumption
by regenerative braking.

4.1 Choice of the horizon in the tuning procedure

The feed-forward component should encapsulate the trade-
off between general tendency and aggressiveness of the
drive cycle along a receding window. The longer the hori-
zon Nλ, the smoother the feed-forward component be-
comes. MPC performs a local optimization and therefore,
λ should be able to adapt fast enough with respect to



Fig. 4. Generic representation of the control structure; in
present study, SOCsp was set constant. S&S stands
for stop & start

drive cycle aggressiveness. In (Liu et al., 2015), a mea-
surement of traffic and driver aggressiveness based on jerk
periodograms has been introduced. The periodogram is
an estimate of the spectral density and it is given by the
squared modulus of the Discrete Fourrier Transform.

In this paper, the periodogram of the wheel power will
be used to analyse the aggressiveness information incor-
porated into λ, by using the frequency cumulative content
for different prediction horizon values as in the expression
below, where p stands for periodogram.

r =

∫ 1
2 fNλ
f=0 p(f)df∫ fs

2

f=0
p(f)df

(20)

where fs is the sampling frequency (here: fs = 1Hz),
fNλ = 1

Nλ
. This definition implies that for Nλ = 1s, the

ratio is 1, that is, all drive cycle variations are included be-
cause no averaging is performed. If Nλ increases, the ratio
diminishes due to smoothing. This can be observed in Fig.
5, where the evolution of the aggressiveness indicator with
respect to the prediction horizon is depicted for several
drive cycles. For values superior to 60s, the smoothing
is significant for all the scenarios considered. In certain
cases, such as ARTEMIS urban and traffic jam, the loss of
aggressiveness information occurs at even lower horizons
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Fig. 5. Ratio of the frequency content for different predic-
tion horizon values and drive cycles

and therefore, the prediction horizon choice is drive - cycle
dependent.

5. SIMULATION AND RESULTS

The strategy was validated in Matlab/Simulink, in co-
simulation with a high-fidelity model for the vehicle,
designed in AMEsim. The cost of a restart was set to
tidle = 2s, MPC sampling time ∆topt = 0.5s and thus,
Nstop = 4. Several drive cycles were considered, whose
speed profiles are depicted in Fig. 6.

The influence of the upper layer horizon was analyzed
for a MPC control horizon of 5s which is long enough to
include the stop-start decision (Stroe et al., 2016b). The
consumption sensitivity with respect to Nλ is illustrated
in Fig. 7. NEDC shows a decrease in consumption until
Nλ = 40s and then, an increase (final SOC is the same
for all the cases). For Artemis urban, Nλ = 5s gives the
lowest normalized consumption, for a final SOC slightly
greater than the one for the other horizons (SOCf =
52.58% for Nλ = 5s vs SOCf = 51.15% for the other
values). FTP-75 shows an improvement up to 20s, and
then a constant degradation, with a final SOC that slightly
decreases starting with Nλ. For the traffic jam, an horizon
of 10s provides the lowest consumption value, with a non-
monotonic behavior for the higher horizons.

These results can be interpreted through the aggressive-
ness analysis introduced in the previous section. From Fig.
5 it is possible to extract a limit for the upper layer horizon
and its optimal value can be determined by empirically
choosing the value of 0.5 for the ratio defined by (20),
which would translate the trade-off between average and
transient behavior. This gives Nλ = 40s for NEDC, 5s for
Artemis urban, 20s for FTP-75 and 10s for traffic jam. The
values are therefore around 30s, which is coherent with the
current availability of accurate preview data.

A comparison with a PMP - based method, as defined in
(9), is summarized in Table 2, where for the MPC strategy
the Nλ with the best consumption was retained. In PMP
case, a constant equivalence factor was determined offline
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Table 2. Fuel consumption [L/100km] and final
SOC[%], PMP and MPC

XXXXXXXXCycle
Strategy

PMP MPC
Relative

difference

NEDC
4.5 4.76

5.77%
(70.26%) (70.57%)

Artemis urban
5.61 6.11

8.9%
(52.76%) (52.58%)

FTP-75
4.5 4.82

7.11%
(55.74%) (55.16%)

Traffic jam
5.55 6.16

11%
(50.12%) (50.32%)

for each drive cycle while the engine stop was performed
for the electric traction phases.
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5.1 Robustness analysis

The MPC controller, as shown in Fig. 4, receives at each
optimization step the estimated engine torque and the bat-
tery SOC from the vehicle high-fidelity model. The former
is used in the model linearization at the operating point
and the latter represent the current state which interferes
in the calculation of the model parameters (OCV and R
in (7)) and also in the feedback correction term of the
penalty factor. The technical specifications state that the
SOC can be estimated with a precision of ±1% of its value,
whereas for the torque, the estimation accuracy is of ±5%.
For each drive cycle, the 5 scenarios listed below have been
considered and the results summarized in Tables 3 and 4
for two different Nλ values.

(1) positive offset for Tice, accurate SOC
(2) negative offset for Tice, accurate SOC
(3) signed offset for Tice, but with a random distribution,

accurate SOC
(4) random offset of ±1% of its current value for SOC,

accurate Tice
(5) random offsets on both inputs

The fuel consumption degradation is less than 2% for
the considered scenarios. It can be noticed that the first
scenario, with a positive offset for the engine torque,
shows a more important increase in consumption, whereas
the second (negative offset) may lead to a decrease, as
it is the case for Artemis urban. This is due to the
impact on the stop decision, which may be favored by
the latter. Disturbances on SOC have a stronger impact
on trajectories where the constraints are active: Artemis
urban, Nλ = 10s and FTP-75, Nλ = 20s, as it is depicted
in Fig. 8. For Artemis urban, the lower constraints are
activated during a proportionally longer amount of time
than for FTP-75, which explains the difference in the
consumption degradation. It can be noticed that SOC
limitations are sometimes violated, but this is due to the
use of slack variables, as in (15d).



Table 3. Fuel consumption [L/100km] and final
SOC[%], different Nλ, Tice offset

XXXXXXXXCycle
Case

Baseline 1 2 3

NEDC
20s

4.87 4.875 4.81 4.86
(70.57%) (70.57%) (70.57%) (70.57%)

40s
4.76 4.78 4.75 4.77

(70.57%) (70.57%) (70.57%) (70.57%)

A. urban
5s

6.11 6.115 6.113 6.11
(52.58%) (52.58%) (52.54%) (52.68%)

10s
6.14 6.15 6.07 6.12

(51.15%) (51.15%) (51.16%) (51.16%)

FTP-75
10s

4.82 4.82 4.82 4.82
(57.07%) (57.1%) (57.1%) (57.06%)

20s
4.82 4.83 4.81 4.83

(55.16%) (54.91%) (55%) (55.04%)

T. jam
10s

6.16 6.2 6.17 6.16
(50.32%) (50.33%) (50.32%) (50.32%)

20s
6.48 6.58 6.5 6.51

(50.28%) (50.29%) (50.28%) (50.29%)

Table 4. Fuel consumption [L/100km] and final
SOC[%], different Nλ, SOC disturbance and

combined disturbance (Tice and SOC)

XXXXXXXXCycle
Case

Baseline 4 5

NEDC
20s

4.87 4.85 4.85
(70.57%) (70.33%) (70.32%)

40s
4.76 4.76 4.77

(70.57%) (70.33%) (70.32%)

A. urban
5s

6.11 6.11 6.11
(52.58%) (52.26%) (52.28%)

10s
6.14 6.25 6.22

(51.15%) (50.62%) (51.04%)

FTP-75
10s

4.82 4.81 4.82
(57.07%) (56.88%) (57%)

20s
4.82 4.85 4.83

(55.16%) (55.9%) (55.88%)

T. jam
10s

6.16 6.2 6.21
(50.32%) (50.52%) (50.52%)

20s
6.48 6.52 6.54

(50.28%) (50.53%) (50.56%)

6. CONCLUSIONS AND PROSPECTS

In this paper, a two-layer predictive control structure for
the energy management of a hybrid electric vehicle was
proposed. The MPC low-level controller handles the torque
distribution and the engine ON/OFF decision. The latter
was introduced without the use of a discrete optimiza-
tion variable, but as a model-based a-posteriori decision.
A short-term prediction horizon was used for the MPC
problem, which is suitable for real-time implementation
and also for reducing the impact of inaccuracies of the
linearized prediction model. The MPC cost function trans-
lates the trade-off between the engine and the battery use
and it was expressed as a weighted sum of the squared
consumptions of these two elements. The tuning factor
dependence on the drive cycle makes its choice a difficult
problem and in this paper, a novel approach was proposed.
The tuning is handled at an upper layer, using on a long-
term traffic prediction (speed and wheel torque), in an
average-based framework, which allows the integration of
drive cycle characteristics. The preview horizon should
provide a trade-off between transient and average behav-
ior, which is not ensured by an unique value for all types

of speed profiles. Here, the wheel power periodogram was
introduced in order to define an indicator of the aggressive-
ness content of the upper layer horizon and thus, providing
a tool to determine the horizon value that satisfies the
aforementioned requirement.

A sensitivity analysis was also performed, that proved
the robustness of the control with respect to SOC and
to engine torque estimation. The influence of the driver
behavior and of the slope, as well as the introduction of
sailing functionality represent topics of a future work.
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