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An analytical method is proposed to solve the optimization problem of energy management for a parallel hybrid electric vehicle. This method is based on Pontryagin's Maximum Principle (PMP) for a class of Hybrid Dynamic Systems (HDS). Therefore, the analytical models are used, which are an approximation of the reference models. A numerical method based on the reference models is also used in order to validate the analytical solution by comparing their results. In this paper, two types of optimization variables are considered: continuous and discrete. The first type is the power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). The second one is the transmission ratio, which includes the ICE On/Off decision. The results show that the analytical and the numerical solutions are almost the same. In addition, the analytical approach requires less computing time and requires less memory space than the numerical method.

INTRODUCTION

In the automotive sector, the hybridization of the vehicle powertrain is considered as an alternative to reduce energy consumption and pollution emissions. Hybrid vehicles use at least two distinct types of power. Among them, the Hybrid Electric Vehicle (HEV) is composed of an internal combustion engine and one or more electric machines, as well as an energy buffer.

There are many approaches to design an optimal energy management strategy: deterministic Dynamic Programming (DP) [START_REF] Pérez | Optimization of power management in an hybrid electric vehicle using dynamic programming[END_REF][START_REF] Debert | Energy management of a high efficiency hybrid electric automatic transmission[END_REF], stochastic DP [START_REF] Johannesson | Assessing the potential of predictive control for hybrid vehicle powertrains using stochastic dynamic programming[END_REF], and Pontryagin's Maximum Principle (PMP) [START_REF] Serrao | Ecms as a realization of pontryagin's minimum principle for hev control[END_REF][START_REF] Kim | Optimal control of hybrid electric vehicles based on pontryagin's minimum principle[END_REF][START_REF] Stockar | Energy-optimal control of plugin hybrid electric vehicles for real-world driving cycles[END_REF]. While it is a globally optimal energy management, dynamic programming is computationally expensive, which limits its application to low-order systems (typically two states). The PMP offers the possibility to compact the optimization problem by defining the Hamiltonian function to handle the balance between the fuel cost and other related constraints, typically the battery state of charge. However, the main difficulty of the PMP method remains in finding the co-state.

The PMP method is widely used to solve in this area, analytically and numerically. In [START_REF] Elbert | Engine on/off control for the energy management of a serial hybrid electric bus via convex optimization[END_REF], the optimal torque split and the engine state On/Off were computed analytically using the PMP approach for a serial hybrid electric bus. [START_REF] Pham | Analytical solution to energy management guaranteeing battery life for hybrid trucks[END_REF] proposed to calculate in addition the optimal EM On/Off analytically using the PMP, while in [START_REF] Nüesch | Convex optimization for the energy management of hybrid electric vehicles considering engine start and gearshift costs[END_REF], the engine On/Off and gearshift stategies were given numerically by a combination of DP and PMP. In this study, we focus on finding the optimal power split, engine state and gearshift analytically using PMP.

The objective of this paper is to find an energy management solution that minimizes the fuel consumed by the ICE. Therefore, an analytical solution, based on PMP, is proposed for energy management of a parallel HEV. The optimization variables are: the power split and the transmission ratio. This paper is organized as follows. In section 2, the reference and the analytical models are presented. In section 3, the resolution of the optimization problem is proposed in two steps: first, the optimal power split and then the optimal transmission ratio. In section 4, the implementation of the analytical solutions is presented. In section 5, simulation results obtained analytically are compared to the results obtained numerically. The purpose of this comparison is to validate the analytical solutions.

VEHICLE MODEL

As shown in Fig. 1, the HEV configuration considered is a parallel HEV which consists of a battery, an electric motor, and an ICE delivering power to the wheels via a gearbox. The wheel power P w , demanded by the driver, is calculated from the vehicle speed set-point. So, the vehicle speed is considered as an input of the optimization, and is given by different cycles.

In the following the reference and approximated models of the different components are presented.

Reference Models

Engine

The engine is modeled by the fuel flow (Q) consumed by the engine to deliver the mechanical power P i .

Q(t) = ṁfuel (T i (t), ω i (t)) [g/s] (1) 
where ω i and T i are the engine speed and torque. The mechanical power generated by the engine is expressed by: P i = T i ω i [W ] and limited by two functions of ω i :

P i (ω i (t)) ≤ P i (t) ≤ P i (ω i (t)) (2)
Electric Motor (EM) The electric motor model expresses the electric power produced by the EM which includes the mechanical power delivered and the losses obtained from the specific power loss of the EM. So, the electric power P e has the following expression: P e (t) = P em (t) + loss(T e (t), ω e (t)) [W ]

(3)

with P em (t) = T e (t)ω e (t) [W ]
The power P em is limited by two functions of ω e : P e (ω e (t)) ≤ P em (t) ≤ P e (ω e (t)) (4)

Battery

The battery is modeled as a resistive circuit [START_REF] Badin | Hybrid Vehicles[END_REF][START_REF] Murgovski | Component sizing of a plug-in hybrid electric powertrain via convex optimization[END_REF] and the battery power is given by: P bat (t) = OCV (SoC)i bat (t)[w]

(5) P bat (t) = P e (t) + R bat (SoC)i 2 bat (t) (6) The State of Charge (SoC) of the battery is defined as:

ṠoC(t) = - i bat (t) Q max (7)
where Q max [C] is the maximal battery charge.

Analytical Models

Some assumptions and approximations were made to make the models analytical.

Engine The fuel flow Q is modeled by the "Willans Lines Model" as described in [START_REF] Rizzoni | Unified modeling of hybrid electric vehicle drivetrains[END_REF]. Its analytical model is given by:

Q(P i ) = a 1 P i (t) + Q 0 (t) if P i ≤ P i ≤ P lim a 2 (P i (t) -P lim (t)) + Q lim (t) if P lim ≤ P i ≤ P i (8)
where Q 0 is the idle fuel consumption.

where the parameters Q 0 , P lim , Q lim , P i and P i are given as functions of ω i :

Q 0 (ω i (t)) = q 2 ω i (t) 2 + q 1 ω i (t) + q 0 (9) P lim (ω i (t)) = p 1 ω i (t) + p 0 (10) Q lim (t) = a 1 P lim (t) + Q 0 (t) ( 11 
)
P i (ω i (t)) = k 1 ω i (t) + k 0 ( 12 
)
P i (ω i (t)) = -Q 0 (t) a 1 (13)
and a 1 , a 2 are assumed constant, where a 1 >> a 2 .

Fig. 2 shows that the approximated engine model is sufficiently representative of the reference engine model. 

• The open circuit voltage (OCV ) is constant • The battery losses are neglected (R bat i bat 2 (t) ≈ 0)
Since the OCV is assumed constant, the State of Energy (SoE) can be used. It is given by:

ṠoE(t) = - OCV i bat (t) E max ( 14 
)
where

E max = OCV Q max [J] is the maximal battery energy. The SoE[%] is limited by: 0 ≤ SoE(t) ≤ 100 (15)
The analytical model of the battery power, which has been validated (Fig. 3), is given by: 

P bat (P em ) = a -(

OFF-LINE OPTIMIZATION

In this section, the off-line optimization process is presented (Fig. 4). The outputs of this process are the optimal P i (P opt i

) and the optimal transmission ratio R i (R opt i ) which are calculated analytically. In this approach, P opt i is first calculated in steps 1 and 2, and R opt i is determined afterwards in step 3. The optimization problem to determine P opt i is formulated as:

OP A :                  min Pi J ṠoE(t) = - P bat (t) E max P i + P em = P w P i ≤ P i ≤ P i P e ≤ P em ≤ P e (17)
where

J = t f t0 Q(P i (t))dt (18)
To find the optimal power split, the PMP is used. So, according to the PMP, minimizing J is equivalent to minimizing the Hamiltonian function which is calculated from ( 16) and ( 18), as follows:

H hyb (P i , P w , λ) = Q(P i ) + λ(t)P bat (P em ) (19) where λ is the Lagrange factor.

The Hamiltonian function H hyb is the sum of two piecewise affine functions. So, to find P opt i , first, we have to calculate the expression of H hyb . This is done by considering the points where the functions Q and P bat change their slope. These points are P i , P lim , P w and P i .

The general expression of H hyb is:

H hyb (P i ) = A 1 P i + A 0 + λ(B 1 (P w -P i ) + b)
The value of P i which minimizes H hyb is the optimum. So, the minimum of H hyb depends on the sign of (A 1 -λB 1 ) which depends on λ and P w . As shown in Fig. 5, if:

• P i < P lim then A 0 = Q 0 , A 1 = a 1 • P i > P lim then A 0 = Q lim -a 2 P lim , A 1 = a 2 • P i < P w then B 1 = a + • P i > P w then B 1 = a - 𝑃 w 𝑃 i 𝑃 w 𝑃 w 𝑃 lim 𝑃 i 𝑃 i 𝐴 0 = 𝑄 lim -𝑎 2 𝑃 lim 𝐴 1 = 𝑎 2 𝑃 i = 𝑃 w 𝐵 1 = 𝑎 - 𝐵 1 = 𝑎 + 𝐵 1 = 𝑎 - 𝐴 1 = 𝑎 1 𝐵 1 = 𝑎 + 𝐴 1 = 𝑎 2 𝐴 0 = 𝑄 lim -𝑎 2 𝑃 lim 𝐴 0 = 𝑄 0 𝐴 0 = 𝑄 0 𝐴 1 = 𝑎 1

Fig. 5. Determination of the expression of H hyb

Finally, as shown in Fig. 6, the three possible configurations of H hyb are: increasing, decreasing or decreasing then increasing. Therefore, in each case, P opt i is deduced: The introduction of a discrete variable in the optimization problem P makes it hybrid from a mathematical point of view. For this kind of system, PMP can be applied [START_REF] Riedinger | Contribution à la commande optimale des systèmes dynamiques hybrides[END_REF]. In [START_REF] Riedinger | Contribution à la commande optimale des systèmes dynamiques hybrides[END_REF], the author proposed a classification for hybrid dynamic systems (HDS) according to the nature of their hybridization and a modeling for each type. One of these types is HDS with controled hybridization. This kind of HDS corresponds to the studied system and its modeling, proposed by [START_REF] Riedinger | Contribution à la commande optimale des systèmes dynamiques hybrides[END_REF]; [START_REF] Riedinger | An optimal control approach for hybrid systems[END_REF], is given in the following.

• P opt i = P i for
It is assumed that:

• k ∈ K = {1, 2, ..., N } is the discrete control, • u k ∈ U k is the continuous control.
The system dynamics and the cost function are given by:

ẋ = f (x, u k , k, t) = N k=1 m k (t)f k (x, u k , t) (20) 
J = t f t0 L(x, u k , k, t) = t f t0 m k (t)L k (x, u k , t) (21) 
with m k = 1 when k is the current mode; if it is not, m k = 0.

By applying the PMP to the global system, the Hamiltonian function H is given by:

H(x, u k , k, λ, t) = L(x, u k , k, t) + λf (x, u k , k, t) (22) 
and in each mode k, the Hamiltonian function H k is given by:

H k (x, u k , λ, t) = L k (x, u k , t) + λf k (x, u k , t) (23) 
Finally, it was shown in [START_REF] Riedinger | Contribution à la commande optimale des systèmes dynamiques hybrides[END_REF] that the optimal control (k * , u * k ), which minimizes the function H, verifies:

H(x * , u * k , k * , λ * , t) = min k∈K ( min u k ∈U H k (x, u k , λ, t)) (24) 
The Optimal Transmission Ratio In step 3 of the process (Fig. 4), the PMP for HDS is applied in order to calculate the optimal transmission ratio. For example, if the set

K is equal to {R 1 , R 2 }, with ω i (R 1 ) < ω i (R 2 )
, the corresponding Hamiltonian functions are:

H R1 (x, u R1 , λ, t) = L R1 (x, u R1 , t) + λf R1 (x, u R1 , t) (25) H R2 (x, u R2 , λ, t) = L R2 (x, u R2 , t) + λf R2 (x, u R2 , t) (26)
The optimal transmission ratio is obtained by studying the sign of the difference

H R1 (x * , u * R1 , λ * , t) -H R2 (x * , u * R2 , λ * , t) = α(λ)P w + β(λ)
The expressions of α and β are determined in terms of λ.

Finally, as shown in Fig. 8, when:

• P w < P th (λ), H R1 < H R2 then R opt i = R 1 , • P w > P th (λ), H R1 > H R2 then R opt i = R 2 , • P w = P th (λ), H R1 = H R2 . Where P th (λ) = -α(λ) β(λ) is the point of intersection of H R1 with H R2 .
This process could be done for a number of ratios greater than two.

ON-LINE OPTIMIZATION

This section describes how the analytical and numerical solutions are implemented. In both methods, λ opt is assumed constant since the OCV dependence on SoE is neglected. λ opt will be found by dichotomy.

Analytical Method

As shown in Fig. 7, P opt i is implemented in the form of a matrix, the lines are intervals of P w and the columns are intervals of λ. Then, at an instant t, the expression of P opt i is found by placing P w (t) and λ(t) with respect to these intervals.

Regarding R opt i , the formula of P th (λ) should be implemented. At an instant t, P w (t) is compared to P th (λ(t)) to determine R opt i (Fig. 8). Here, four transmission ratios are considered: R i ∈ {R 0 , R 1 , R 2 , R 3 }. The ratio R 0 corresponds to the engine Off, where, L 0 = 0 and u 0 = 0. 

Numerical Method

The diagram in Fig. 9 explains the numerical approach to resolve OP N (27) by applying PMP and using the reference models. First, at every instant t, the control P i is meshed from the minimum P i (t) to the maximum P i (t). Then, the numerical value of H hyb is calculated using the reference models of Q and P bat . Finally, the optimal pair (P opt i , R opt i ) is the one which corresponds to the minimum value of H hyb .

𝑃 w λ 𝑅 i opt = 0 𝑅 i opt = 𝑅 1 𝑷 𝐭𝐡 𝟎𝟏 (λ) 𝑃 e 𝑷 𝐭𝐡 𝟏𝟐 (λ) 𝑷 𝐭𝐡 𝟐𝟑 (λ) 𝑅 i opt = 𝑅 2 𝑅 i opt = 𝑅 3
Fig. 8. Implementation of the limit P th (λ) which defines the optimal ratio

OP N :                      min Pi,Ri
H hyb (P i , R i , P w , λ)

ṠoE(t) = - P bat (t) E max P i + P em = P w P i ≤ P i ≤ P i P e ≤ P em ≤ P e R i ∈ {0, R 1 , R 2 , R 3 } (27)
where H hyb is calculated from ( 1) and ( 6). In this section, the fuel consumption and SoE trajectory results of the analytical method are compared to those of the numerical method in order to establish the performances of the analytical method. The fuel consumption value was obtained by applying the strategies on the reference model. Then, the robustness of the analytical solutions relative to the parameters Q 0 and P lim is studied.

Mesh 𝑃 i = [𝑃 i 𝑡 ∶ ∆𝑃 i : 𝑃 i 𝑡 ] 𝑅 i ∈ {𝑅 0 ,
Table 1 shows that the analytical method has almost the same fuel consumption as the one found by the numerical method for all studied cycles. In addition, the averaged value of the computation time and memory space of the analytical method are lower than those of the numerical one.

Fig. 10 and 11 show that both methods provide a similar SoE trajectory and almost the same optimal control for the highway and urban cycles. 

Robustness Analysis

Since the analytical model of Q is less accurate than that of the EM, the sensitivity evaluation of the analytical solutions (P opt i , R opt i ) relative to the parameters Q 0 and P lim is studied in the following.

The sensitivity, noted s, is measured by the difference in fuel consumption as follows:

s[%] = 100 × ( Q -Q) (28)
where Q, Q are respectively the fuel consumption corresponding to the control calculated with ( Q0 , Plim ) and (Q 0 , P lim ). It should be noted that the perturbation is inserted only in the strategy not in the model so that the comparison could be made.

The parameter perturbation is introduced by the factors α Q0 and α P lim : Q0 = α Q0 × Q 0 and Plim = α P lim × P lim . If α < 1, the parameter is underestimated, and if α > 1, it is overestimated. 13 show that the sensitivity of the optimal control is very low for both Q 0 and P lim . In fact, an estimation error of ±50% in Q 0 causes an overcost less than 4%. Regarding P lim , an estimation error of ±30% causes an overcost less than 20%. This study aims to determine the tolerance interval of the model's parameters.

CONCLUSION

In this paper, an analytical approach has been presented and applied to calculate the energy management strategy for a parallel HEV. The results of the comparison show that the analytical method, which is based on analytical models, provides an optimal solution close to the one given by the numerical method, thereby validating the approximated models. The implementation of the analytical solutions is easier and requires less computing time than the numerical resolution. This encourages their use for embedded optimal control. Moreover, the results show that the analytical method is as efficient in the continuous case as in the discrete case. Finally, the results of the robustness analysis show that the analytical solutions are only slightly sensitive to the model parameter variations.

As perspectives, the analytical method will be applied to other HEV architectures (serial, serial/parallel), and to more complex configurations (several EM and batteries). This strategy will be implemented for real-time energy management. The robustness analysis can be extended to the parameters of the EM model.
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