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Which methodology is more appropriate to solve eco-driving optimal
control problem for conventional vehicles?

D. Maamria a, K. Gillet a, G. Colin a, Y. Chamaillard a and C. Nouillant b

Abstract— In this paper, two simplified methods based on
Dynamic Programming (DP) to solve an Eco-driving problem
for a conventional vehicle equipped with an internal com-
bustion engine are studied. The first method is based on
the transformation of a time-based Optimal Control Problem
(OCP) into a distance-based OCP while the second is based on
solving the time-based OCP directly. The Pontryagin Minimum
Principle (PMP) is used to decrease the complexity of the
OCP formulation. Based on simulations, the two methods are
compared in terms of optimality (fuel consumption) and the
time needed to run the DP. The impact of the mesh choice on
the optimality of the solution is also investigated.

I. INTRODUCTION

The announced depletion of fossil fuel sources, climate
change due to pollution and an increase in overall energy
demands are major challenges for the automotive industry.
Generally speaking, energy efficiency is increasingly becom-
ing a major concern and a subject of attention from major
international organizations around the world.

Besides the development of alternative fuel sources, the
main research directions towards improving energy efficiency
in the automotive field focus on fuel efficiency, with a
particular emphasis on decreasing carbon dioxide (CO2)
emissions [1], [2]. Driver support systems [3]–[6] are among
the proposed solutions. The idea is the following: there are
different ways of driving during a specific journey and they
are not equivalent from an energy consumption viewpoint.
A driver support system calculates and suggests the speed
and the gear-box ratio set points to the driver through an
interface integrated in the dashboard of the vehicle with the
aim of minimizing the fuel consumption (and/or pollutant
emissions) over a given time horizon with various constraints
(stops, distance, speed limitations, etc.) [6]–[10].

The design of a driver support system can be formulated
as an Optimal Control Problem (OCP) [4], [11]. Usually, the
fuel consumption, engine emissions or any combination of
both over a fixed time window is the cost function to be
minimized [2], [7]. Two dynamics are considered: the speed
and the position of the vehicle while the main constraints
bear on speed limitations, vehicle stops and traveled distance
[12], [13]. This problem was addressed for conventional
vehicles in [12], for electric cars in [3], [4], [12] and for
hybrid electric cars in [12], [14]–[16].
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To solve this kind of OCP for conventional vehicles, a
three dimensional Dynamic Programming (DP) approach
was initially used [2], [17]. In order to reduce the com-
putational time, a two-dimensional approach was subse-
quently chosen, as suggested in [11], [12], [17]. This two-
dimensional approach transforms a time-based OCP into a
position-based OCP and introduces a terminal tunable cost
to penalize the driving cycle duration [11]–[13].

In this paper, an alternative two-dimensional DP approach
is investigated for conventional cars. It is based on solving
a time-based OCP. A terminal tunable cost is introduced to
penalize the total traveled distance. This approach will be
compared to the previous one usually used in the literature
[11], [12] in terms of optimality (fuel consumption) and
computation time (complexity).

The paper is organized as follows. In Section 2, the
vehicle model is described. The calculation of eco-driving
cycles using DP with two simplified approaches is presented
in Section 3. Section 4 discusses numerical results and
comparisons for two driving cycles. In light of the results,
we draw a conclusion on the appropriate approach to deal
with the problem under consideration.

II. VEHICLE MODELING

A. Motion equations

The vehicle is modeled on the longitudinal axis. The
motion of the vehicle is the result of the forces applied on
its body. According to Newton’s law of motion, the vehicle
speed v satisfies the following differential equation:

(m+mrot) ·
dv(t)

dt
= Ft(t)− Fr(t), (1)

where Ft is the traction force to be provided by the engine,
Fr is the sum of resistance forces and m is the total vehicle
mass. The term mrot is an equivalent mass of the rotating
parts. It accounts for the overall inertia of the wheels (ntire ·
jtire) and for that of the engine (jrot):

mrot =
ntire · jtire + jrot

r2tire
,

where rtire is the wheel radius. The force Fr comprises the
rolling resistance force, the aerodynamic drag force and a
force due to the road grade. Its expression is given by:

Fr(t) = c0 + c1 · v(t) + c2 · v(t)2, (2)

where ci, i = {0, 1, 2} are the coefficients of the road load
equation (this expression was employed in [18], [19]). This
model considers only the forces in the longitudinal direction.



Variations of friction parameters during curves, wind forces,
and other disturbances are neglected.

B. Transmission

The driver’s torque demand and the vehicle speed are
directly calculated from the wheel speed profile, elevation
profiles and the gear-box ratio. The resulting torque value
Twh can be positive (traction) or negative (braking). The
engine torque Teng is related to the torque required at the
wheel Twh by:

Twh(t) = rtire · Ft(t) = ηgb ·Rgb(t) ·Rt · Teng(t), (3)

where Rgb is the gear-box ratio, ηgb is the gear-box efficiency
and Rt is the differential ratio. Similarly, the rotational speed
ωeng of the ICE is related to the vehicle speed v by:

ωeng(t) = Rgb(t) ·Rt ·
v(t)

rtire
.

C. Internal Combustion Engine (ICE)

The ICE used here is a diesel engine. The fuel consump-
tion ṁf (g/s) is computed through a look-up table (quasi-
static map) as a function of the engine rotational speed
(ωeng) and the effective engine torque (Teng) (see Figure 1):

ṁf = ṁf (ωeng, Teng).

The model parameters are summarized in Table I.
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Fig. 1. Specific fuel consumption (g/kWh) of the internal combustion
engine as a function of engine rotational speed and engine torque. For
confidentiality reasons, the data are normalized.

III. ECO-DRIVING

The so-called eco-driving methodology consists of finding
the optimal way to reduce the overall energy consumption
[3], [7]. For a fixed road, the objective is to find the
best speed profile minimizing the vehicle fuel or power
consumption knowing that the vehicle starts from a point
A at rest and must reach a destination point B at time tf ,
with a zero velocity. This kind of question can be formulated
as an OCP [4], [7].

TABLE I
VEHICLE MODEL PARAMETERS

Acronym Description Unit
m Vehicle mass kg
rtire Wheel radius m
ntire Wheel number −
jtire Wheel inertia kg·m2

c0 Constant coefficient of the road load N
c1 Linear coefficient of the road load N/(m/s)
c2 Quadratic coefficient of the road load N/(m/s)2
ηgb Gear-box efficiency −
Rgb Gearbox ratio −
Rt Differential ratio −
ωidle Engine idle speed rpm

A. OCP formulation

The cost function (4) to be minimized is the fuel con-
sumption over a fixed time window of duration tf .

J =

∫ tf

0

ṁf (ωeng(t), Teng(t))dt. (4)

The control variable u is composed of two components: the
engine torque Teng and the gear-box ratio Rgb:

u(t) = [Teng(t), Rgb(t)].

This optimization is carried out under the following dynam-
ical constraints:

dv(t)

dt
= f(v(t), u(t)), v(0) = 0, (5)

dx(t)

dt
= v(t), x(0) = 0, (6)

where x is the position of the vehicle and the function f is
calculated by combining (1, 2, 3):

f =
1

m+mrot
(−c0−c1 ·v−c2 ·v2 +

ηgb
rtire

·Rgb ·Rt ·Teng).

Since the speed, the engine torque and the gear-box ratio are
limited and the final position and the final speed are fixed,
the optimization must be performed under the following state
and input constraints:

v(t) ∈ [0, vmax(x(t))], (7)
Teng(t) ∈ [Tmin(ωeng(t)), Tmax(ωeng(t))], (8)
x(tf ) = D, (9)
v(tf ) = 0, (10)

where D is the total traveled distance, Tmin and Tmax are
given by look-up tables as a function of the engine rotation
speed ωeng . The speed limitations are given as a function
of the vehicle position [2], [3] and not of time, as shown
in Figure 2 (the blue line is the initial driving cycle and the
dashed line represents the chosen speed limits).

B. Dynamic Programming (DP)

In DP, the calculation of the optimal trajectories is based
on the Bellman principle while searching from the final
state backward in time. The Bellman principle states that
an optimal policy has the property that whatever the initial
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Fig. 2. Speed Limits (km/h) as a function of the vehicle position (m)

state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting
from the first decision [20], [21].

Considering the cost function J to be minimized:

J =

∫ tf

0

L(X(t), u(t), t)dt,

from a mathematical viewpoint, Bellman’s principle can be
formulated as follows: let t ∈ [0, tf [ and X(t) ∈ Rn be
given, then for all real r ∈ [t, tf ], the cost-to-go function V
satisfies:

V (X(t), t) = min
u∈U

{∫ r

t

L
(
X(τ), u(τ), τ

)
dτ + V

(
X(r), r

)}
This equation is solved recursively. The problem is meshed:
∆t for time tk, ∆X for the state variables X(tk) = Xk

and ∆u for the inputs uk. Then, proceeding backward from
the final state at t = tf , the algorithm computes the cost
from one state to another until the initial time t = 0.
Finally, the optimal control trajectories are simulated in order
to obtain the optimal state trajectories. However, problems
of computation time and of memory allocation generally
prevent the method from computing optimal solutions of
problems with a long time horizon and a state dimension
greater than three. This is the known as the ”curse of
dimensionality”.

C. Speed trajectory computation

To compute an eco-driving cycle, the following constraints
[7] have to be included:
• the same final distance x(tf ), the same number of stops

and the same duration tf as the initial driving cycle,
• the vehicle speed limitations depending on the position

of the vehicle (x).
Then, the objective is to find a new driving cycle that

takes these constraints into account and leads to a lower fuel
consumption. In the case of eco-driving cycles, vehicle stops
are relevant in distance and not in time [12].

To calculate the optimal velocity profile, two simplified
approaches are investigated. The Pontryagin Minimum Prin-
ciple (PMP) [22] is used to decrease the complexity of the
OCP. After, the obtained simplified OCPs are solved using
DP.

1) Time method: In this approach, the OCP is solved in
the time domain. The associated Hamiltonian H1 is defined
by:

H1(v, u, λ, µ) = ṁf (v, u) + λ · f(v, u) + µ · v,

where λ and µ are the adjoint variables associated to v and
x, respectively. From the first order optimality conditions,
the adjoint states λ and µ are defined by:

λ̇ = −∂H1

∂v
,

µ̇ = −∂H1

∂x
= 0.

From the second equation, µ is constant and its value is
calculated to satisfy the final constraint on x: x(tf ) = D. So,
for a fixed value of µ one can define the following simplified
OCP:

(OCP1) : min
u

∫ tf

0

[ṁf (v, u) + µ · v] dt (11)

under the dynamics of v in (5), the final constraint in (10) and
the constraints (7, 8). The final constraint (9) on the vehicle
position is satisfied by finding the value of the constant
tunable parameter µ. In this method, the final time tf and
the time step are fixed.

2) Space method: In this approach, the OCP is solved in
the space domain. From the dynamics of x, we can write,
when v is not zero:

dt =
dx

v
.

This expression is used to transform a time-based OCP into
a position-based OCP as follows:

1) The cost function to be minimized becomes of the
form:

Jmod =

∫ D

0

ṁf (v, u)

v
dx.

2) The dynamics of t and v are of the form:

dv

dx
=

f(v, u)

v
, (12)

dt

dx
=

1

v
. (13)

3) The final constraints: t(D) = tf , v(D) = 0.
The Hamiltonian H2 associated with this new OCP is de-
fined by:

H2(v, u, p1, p2) =
ṁf (v, u)

v
+ p1 ·

f(v, u)

v
+ p2 ·

1

v
,

where p1 and p2 are the adjoint variables associated to v and
t, respectively. The adjoint states p1 and p2 are given by:

ṗ1 = −∂H2

∂v
,

ṗ2 = −∂H2

∂t
= 0.



From the second equation, p2 is constant and its value is
calculated to satisfy the final constraint on t: t(D) = tf . So,
for a fixed value of p2, we can define the following simplified
OCP:

(OCP2) : min
u

∫ D

0

[ṁf (v, u) + p2]
dx

v
(14)

under the dynamics of v in (12), the final constraint v(D) =
0 and the constraints (7, 8). The constraint on the final time
t(D) = tf is satisfied by finding the value of the constant
tunable parameter p2. This method is similar to the one used
in [11], [12] where an additional tunable term was added
to the cost function as a terminal cost β · tf . The constant
tunable parameter β penalizes the final time to obtain almost
the same time duration as the initial driving cycle. In this
method, final position x(tf ) and distance step are fixed.

IV. NUMERICAL RESULTS AND COMPARISON

The simulation results are obtained for a conventional
vehicle (1930 kg curb weight) equipped with a diesel engine.
Figure 1 describes the specific fuel consumption of the
engine as a function of the normalized engine torque and
the normalized engine rotational speed.

This Section is divided into two parts. In the first part,
the two methods (time and space) are compared. A short
driving cycle of duration 360s and traveled distance of 6.9km
with only one speed limit of 80km/h is considered. The
objective is to analyze the solutions of (OCP1) and (OCP2)
in terms of optimality (fuel consumption) and computation
time. Based on the conclusion drawn from this analysis, we
decide which methodology is the most appropriate to solve
the OCP defined in Section III-A.

In the second part, the space method is used. The impact
of the mesh choice on the optimality of the solution and the
state trajectories is studied: a more realistic driving cycle ex-
tracted from the Worldwide harmonized Light vehicles Test
Cycle (WLTC), namely a cycle of duration 588s and traveled
distance of 7.6km is used. The speed limits presented in
Figure 2 are considered.

A. Comparison of the time and the space methods for a
(short) driving cycle

The (OCP1) and (OCP2) are solved for various values of
the constant parameters µ and p2. The following mesh was
chosen: a spacing of du = 1N.m for the engine torque Teng ,
of 1 for the gear-box ratio Rgb (from 1 to 6) and of dv =
0.01m/s for the vehicle speed. For (OCP1), the time step is
dt = 1s and for (OCP2), the distance step is dx = 20m.
The results obtained in terms of fuel consumption, traveled
distance and final time are given in Figure 3 (respectively in
Figure 4). Each point in this figure is obtained for a fixed
value of µ (respectively of p2).

These results show that the relationships between the fuel
consumption, the traveled distance and the final time are
monotonic: the fuel consumption increases when the distance
increases (see Figure 3) while it decreases when the final
time increases (see Figure 4).
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Fig. 3. Fuel consumption [g] as a function of the traveled distance [km].
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point in this figure is obtained for a fixed value of p2 in (OCP2).

To make a fair comparison between the two methods,
the final time tf and the traveled distance x(tf ) have to
be almost the same (surrounded regions with red circles in
Figures 3 and 4). The values of µ and p2 ensuring these
two conditions can be iteratively determined (for example
by using a dichotomy or a Newton method). The vehicle
speed trajectories satisfying these two conditions for the two
methods are given in Figure 5: the two speed trajectories
are comparatively close. The fuel consumption and the time
needed to run the DP for each OCP are the following:

• The time method: the fuel consumption is 216.4g and
the time needed to solve the (OCP1) is 1200s.

• The space method: the fuel consumption is 217.8g and
the time needed to solve the (OCP2) is 1150s.

The two approaches are very close in terms of fuel consump-
tion (the time method is better than the space method) and
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Fig. 5. Vehicle speed [km/h] as a function of time [s]

computation time (the space method is faster than the time
method).

The distance and time steps for the two approaches are
presented in Figures 6 and 7, respectively. These figures show
that the time method is more accurate at low vehicle speed
(as it has the lowest δx and δt at low vehicle speed) while
the space method is more accurate at high vehicle speed (as
it has the lowest δx and δt at high vehicle speed).
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As mentioned before, the speed limits are a function of
the vehicle position. The drawback of the time method is
the difficulty of of taking this dependance into account: the
calculation time will increase (the speed limits considered
for the short driving cycle are constant and independent
of the vehicle position, and the calculation time for the
time method is 4.2% higher than with the space method).
On the other hand, the induced sub-optimality on the fuel
consumption is small (less than 0.6%). For these reasons,

the space method is used in the next section for the eco-
driving cycle computation.
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B. Sensitivity study of the space method to the mesh choice

The space method is used to calculate optimal speed
trajectories with the speed limits presented in Figure 2.
Several meshes are tested in order to find a trade-off between
the optimality of the solution and the time needed to solve
the OCP (14) by the DP. The obtained speed trajectories are
shown in Figure 8 versus distance and in Figure 9 versus
time. The fuel consumption [L/100 km] and the computation
time α [s] needed to run the DP are given in Table II.
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Figures 8 and 9 show that the speed trajectories are
impacted by the mesh choice. For the meshes [dv = 0.03m/s,
du = 2N.m] and [dv = 0.04m/s, du = 2N.m], the speed
trajectories are relatively close to the trajectory calculated
for [dv = 0.01m/s, du = 1N.m] (which is considered as



TABLE II
TIME α NEEDED TO RUN THE DP AND FUEL CONSUMPTION.

Consumption [L/100 km] α[s]
Initial Cycle 5.60 −
Eco-cycle 1: dv = 0.01,du = 1 3.72 1620
Eco-cycle 2: dv = 0.03,du = 2 3.76 240
Eco-cycle 3: dv = 0.04,du = 2 3.76 120
Eco-cycle 4: dv = 0.05,du = 2 3.83 77
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a reference in this study). The Eco-cycle 4 calculated for
[dv = 0.05m/s, du = 2N.m] is quite different from Eco-
cycle 1, mainly at high vehicle speeds.

To find a trade-off between the optimality of the different
solutions and the computation time, the fuel consumptions
given in Table II are compared. For the Eco-cycle 3, the
fuel consumption is very close to the fuel consumption
for Eco-cycle 1 (with an induced sub-optimality less than
1%) while the computation time is divided by 13. For
the Eco-cycle 4, the induced sub-optimality compared to
Eco-cycle 1 is 3% while the time needed to run the DP
is divided by 21. Thus, the DP solution for the mesh
[dv = 0.04m/s, du = 2N.m] can be considered as accurate
enough to guarantee a quasi-optimal fuel consumption while
requiring an acceptable computation time. A similar analysis
was conducted for other normalized driving cycles (NEDC,
WLTC, Urban Artemis, Artemis Rural and Artemis highway
cycles) and the conclusion reached is that it is possible to
find a trade-off between the optimality of the solution and
the computation time of the DP.

V. CONCLUSION

The eco-driving problem for conventional vehicles has
been addressed. This problem is formulated as an OCP
aiming at minimizing fuel consumption. Two simplified ap-
proaches (time and space approaches) have been investigated
to solve this optimization problem. The two approaches are
very close in terms of fuel consumption and computation
time. On the other hand, the space method is more appro-

priate for taking speed limits into account (as they are given
as a function of the vehicle position).

Additionally, the impact of the mesh choice has been
studied. Based on the numerical results presented here, it
is possible to find a trade-off between the optimality of the
solution (fuel consumption) and the computation time of
the DP.
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