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1 Introduction

Many efforts of research have been made in the Fluid-Structure Interaction (FSI)
field in order to couple eulerian (or ALE) formulations in the fluid domain with la-
grangian formulations in the solid domain. See, for instance, [8][16], just to cite a
few. In some cases, however, the employ of lagrangian formulations for both do-
mains seems to be interesting. These cases include —but they are not restricted to—
the presence of free surfaces in the fluid, for instance, whose accurate description re-
quires an additional technique (ALE, VoF, level set, among them) in order to capture
the position of the free surface.

The development of meshless techniques in the nineties opened the possibility
of employing lagrangian formulations for both the solid and fluid domains. This is
so since meshless methods are less sensible to “mesh” distortion (i.e., relative nodal
displacement) than finite element methods are. Thus, it is possible to employ an
updated lagrangian strategy for the fluid domain, while employing a total or updated
lagrangian strategy for the solid. This approach is very convenient for some classes
of problems, especially those involving drastic changes in the fluid domain geometry.

Little has been done, however, in coupling meshless formulations for solids and
fluids. In [12], for instance, the so-called Meshless Finite element Method was em-
ployed in order to simulate FSI problems from an updated Lagrangian perspective.
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However, in this case the solid domain was modelled by using an hipoelastic formu-
lation, and thus one can speak of two different fluids interacting rather than an actual
FSI.

In this paper we describe mainly the formulation developed for the fluid from an
updated lagrangian strategy. We employ the α-shape-based Natural Element Method
(α-NEM) to this end. This formulation posses some advantages, that include an exact
interpolation along the boundary [5], that allows for a standard, FE-like, treatment
of the fluid-solid interface conditions. We first describe the basics of the α-NEM
and then introduce the proposed numerical scheme for the integration of the Navier-
Stokes equations in lagrangian form. Finally, we include some examples that demon-
strate the accuracy of the proposed scheme and show the potential of the technique.

2 The Natural Element Method

2.1 Natural Neighbour interpolation

As mentioned before, the vast majority of meshless methods are based on the employ
of scattered data approximation techniques to construct the approximating spaces
of the Galerkin method. These techniques must have, of course, low sensitivity to
mesh distortion, as opposed to FE methods. Among these techniques, the Natural
Element Method employs any instance of Natural Neighbour interpolation [18] [10]
to construct trial and test functions. Prior to the introduction of these interpolation
techniques, it is necessary to define some basic concepts.

The model will be constructed upon a cloud of points with no connectivity on it.
We will call this cloud of pointsN = {n1, n2, . . . , nM} ⊂ R

d, and there is a unique
decomposition of the space into regions such that each point within these regions is
closer to the node to which the region is associated than to any other in the cloud.
This kind of space decomposition is called a Voronoi diagram of the cloud of points
and each Voronoi cell is formally defined as (see figure 1):

TI = {x ∈ R
d : d(x,xI) < d(x,xJ) ∀ J �= I}, (1)

where d(·, ·) is the Euclidean distance function.
The dual structure of the Voronoi diagram is the Delaunay triangulation1, ob-

tained by connecting nodes that share a common (d − 1)-dimensional facet. While

1Even in three-dimensional spaces, it is common to refer to the Delaunay tetrahedralisation with the
word triangulation in the vast majority of the literature
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FIG. 1: Delaunay triangulation and Voronoi diagram of a cloud of points.

the Voronoi structure is unique, the Delaunay triangulation is not, there being some
so-called degenerate cases in which there are two or more possible Delaunay trian-
gulations (consider, for example, the case of triangulating a square in 2D). Another
way to define the Delaunay triangulation of a set of nodes is by invoking the empty
circumcircle property, which means that no node of the cloud lies within the circle
covering a Delaunay triangle. Two nodes sharing a facet of their Voronoi cell are
called natural neighbours and hence the name of the technique.

In order to define the natural neighbour co-ordinates it is necessary to introduce
some additional concepts. The second-order Voronoi diagram of the cloud is defined
as

TIJ = {x ∈ R
d : d(x,xI) < d(x,xJ) < d(x,xK) ∀ J �= I �= K}. (2)

The most extended natural neighbour interpolation method, however, is the Sib-
son interpolant [17] [18]. Consider the introduction of the point x as one of the nodal
points of the clouds. Due to this introduction, the Voronoi diagram will be altered,
affecting the Voronoi cells of the natural neighbours of x. Sibson [17] defined the
natural neighbour coordinates of a point x with respect to one of its neighbours I as
the ratio of the cell TI that is transferred to Tx when adding x to the initial cloud of
points to the total volume of Tx. In other words, if κ(x) and κI(x) are the Lebesgue
measures of Tx and TxI respectively, the natural neighbour coordinates of x with
respect to the node I is defined as

φI(x) =
κI(x)
κ(x)

. (3)

In Fig. 2 the shape function associated to node 1 may be expressed as

φ1(x) =
Aabfe

Aabcd
. (4)
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FIG. 2: Definition of the Natural Neighbour coordinates of a point x.

FIG. 3: Typical function φ(x). Courtesy N. Sukumar.

It is straightforward to prove that NE shape functions form a partition of unity [1],
as well as some other properties like positivity (i.e., 0 ≤ φI(x) ≤ 1 ∀I, ∀x) and
interpolation:

φI(xJ) = δIJ . (5)
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A second type of natural neighbour interpolation was independently established
by Belikov [2] and Hiyoshi [10]. It is referred to as non-Sibsonian or Laplace inter-
polation. This kind of interpolation shares many properties with Sibson’s coordinates
(like positivity, interpolation and linear completeness), and is less computationally
expensive, as noted in [20]. However, it is not as smooth as the previous one since
the derivatives of the non-Sibsonian shape function are not defined along the edges
of the Delaunay triangles that lie within its support. In this work, only Sibson and
Thiessen interpolation have been considered.

It has been argued that Laplace interpolation provides “exact”—i.e., up to linear—
interpolation along the boundary [20], although it was later demonstrated that this is
not true in general [4]. Some of the most salient features of natural neighbour inter-
polation are studied in the following section.

2.2 Properties of Natural Neighbour interpolation

Sibson interpolants have some remarkable properties that help to construct the trial
and test functional spaces of the Galerkin method (see [19], [10] for proofs of the
following properties).

Besides properties like continuity and smoothness (everywhere except at the
nodes for Sibson interpolants and at some other lines of zero measure for the Laplace
interpolant), Sibson and Laplace interpolants posses linear completeness (i.e., exact
reproduction of a linear field).

Sibson and Laplace interpolants can also reproduce linear functions exactly along
convex boundaries. This is in sharp contrast to the vast majority of meshless meth-
ods. In addition, in [5] [4] [24] distinct methods of imposing linear displacement
fields along non-convex boundaries were developed. These are based on the use
of α-shapes, ε-samplings or visibility criteria, respectively. So, essential boundary
conditions can be imposed directly, as in traditional Finite Element methods. In [5]
and [3] it was demonstrated that the construction of the Sibson interpolant over an
α-shape [7] of the domain allows us to accurately extract the shape of the domain,
defined in terms of nodes only, while ensuring linear interpolation along any kind of
boundaries (convex or not). This property was later generalised for arbitrary clouds
of points and a explicit definition of the domain through CAD techniques in [4].

As mentioned before, Laplace interpolants were initially supposed to reproduce
linear essential boundary conditions exactly [20], although it was later demonstrated
that some criteria must be met in order to ensure it [4]. The α-shape approach
mentioned before was later adopted in [11] in the so-called meshless Finite Ele-
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ment method, which consists, essentially, in adopting FE approximation for well-
shaped triangles or tetrahedra, and Laplace interpolation for badly-shaped tetrahedra
grouped forming a polyhedron.

More recently, an approach based on a visibility criterion to ensure an appropriate
interpolation along the boundary has been presented [24], proving successful results
for instance, in the simulation of cracks, where an α-shape-based approach would
need for a tremendous increase in the nodal sampling.

In the next section we study the implication of α-shapes in the development of
the method here proposed.

3 The α-shapes-based Natural Element Method

The identification of the free surface in an updated Lagrangian flow simulation de-
serves some comments. In many prior works, location of boundary nodes is per-
formed by flagging coincident element faces [13], for instance. Once the updating
of nodal positions has been performed, a recursive check must be done in order to
find overlapping boundary segments, thus generating “air” bubbles, holes or cavities
in the domain, splashing drops, etc. In three dimensions this technique is obviously
much more expensive. Splashing and similar phenomena is usually not considered
with this approach.

With the irruption of meshless methods, in which models are constructed by a
set of nodes only, boundary tracking can be performed by employing different strate-
gies. In particular, we have employed shape constructors to perform this task. Shape
constructors are geometrical entities that transform finite point sets into a multiply
connected shape in general. Due to their importance in many areas, they have at-
tracted much attention in Computational Geometry in the last years. In particular,
we employ α-shapes [7]. α-shapes define a one-parameter family of shapes (being
α the parameter), ranging from the “coarsest” to the “finest” level of detail. α can be
seen, precisely, as a measure of this level of detail.

An α-shape is a polytope that is not necessarily convex nor connected, being
triangulated by a subset of the Delaunay triangulation of the points. Thus, the empty
circumcircle criterion holds. Let N be our finite set of points in R

3 and α a real
number, with 0 ≤ α < ∞. A k-simplex σT with 0 ≤ k ≤ 3 is defined as the convex
hull of a subset T ⊆ N of size | T |= k + 1. Let b be an α-ball, that is, an open ball
of radius α. A k-simplex σT is said to be α-exposed if there exist an empty α-ball
b with T = ∂b

⋂
N where ∂ means the boundary of the ball. In other words, a

k-simplex is said to be α-exposed if an α-ball that passes through its defining points
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contains no other point of the set N .
Thus, we can define the family of sets Fk,α as the sets of α-exposed k-simplices

for the given set N . This allows us to define an α-shape of the set N as the polytope
whose boundary consists on the triangles in F2,α, the edges in F1,α and the vertices
or nodes in F0,α.

A three-dimensional simplicial complex is a collection, C, of closed k-simplices
(0 ≤ k ≤ 3) that satisfies:

(i) If σT ∈ C then σT ′ ∈ C for every T ′ ⊆ T .

(ii) The intersection of two simplexes in C is empty or is a face of both.

Each k-simplex σT included in the Delaunay triangulation, D, defines an open
ball bT whose bounding spherical surface (in the general case) ∂bT passes through
the k + 1 points of the simplex. Let 	T be the radius of that bounding sphere, then,
the family Gk,α, is formed by all the k-simplexes σT ∈ D whose ball bT is empty
and 	T < α . The family Gk,α does not necessarily form simplicial complexes, so
Edelsbrunner and Mücke [7] defined the α-complex, Cα, as the simplicial complex
whose k-simplexes are either in Gk,α, or else they bound (k + 1)-simplexes of Cα

. If we define the underlying space of Cα, |Cα|, as the union of all simplexes in Cα,
the following relationship between α-shapes and α-complexes is found:

Sα = |Cα| ∀0 ≤ α < ∞ (6)

Other shape constructors giving homotopy-equivalent shapes have been recently
proposed [6]. In Fig. 4 an example of the previously presented theory is presented.
It represents some instances of the family of shapes for a cloud of points obtained in
the three-dimensional scanning of a human mandible.

Note that the key question in using α-shapes is not to find the precise value of α.
Instead, we must set the problems in terms of what level of detail are we interested
in taking into account for a particular geometry. If this level is set to, say, α, then
the nodal spacing parameter (h in the vast majority of the Finite Element literature)
must be accordingly chosen so as to verify h < α. Actually, it is clear that we are not
going to be able to represent levels of detail of smaller scale than the nodal spacing.

But the use of shape constructors, and particularly, the use of α-shapes has an-
other relevant influence in the Natural Element Method (also in the Meshless Finite
Element Method [11], although it was not initially pointed out by Idelsohn and co-
workers). As demonstrated in [5], the construction of natural neighbour interpolation
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(Sibson or Laplace) on an α-shape of the domain alters the distance measure. Nat-
ural neighbour interpolation is performed on the basis of Voronoi diagrams, which
employ euclidean distance measure in their most general form. This leads to some
lack of interpolation along non-convex boundaries. This interpolation is recovered if
we construct the natural neighbour interpolants over an α-shape of the domain.

Thus, the use of α-shapes in the construction of updated Lagrangian simulations
of fluid flow provides an appealing way to track the boundary of domain while ensur-
ing appropriate interpolation of essential boundary conditions, that can be imposed
directly in the discrete system of equations, as in the Finite Element Method.

4 Governing equations and discretisation

4.1 Governing equations within the fluid domain

We consider here the problem of Fluid Dynamics at moderate Reynolds number.
Thus, the governing equations can be set as follows. Consider a fluid in a region
Ω of the space R

2 or R
3. The fluid flow is governed by the following mass and

momentum conservation equations:

ρ(v,t + (v · ∇)v) = ∇ · σ + ρb in Ω × (0, T ), (7)
∇ · v = 0 in Ω × (0, T ) (8)

where v represents the fluid velocity, σ the stress tensor, ρ represents fluid density
and b the volumetric forces acting on the fluid.

The constitutive equation for a newtonian fluid is given by:

σ = −pI + τ = −pI + 2μ∇sv + λ(∇ · v)I, (9)

where∇s(v) is the strain rate tensor, p the pressure, μ is the dynamic viscosity of the
fluid and λ the second coefficient of viscosity. For incompressible fluids ∇ · v = 0
and consequently the before-mentioned Eq. (9), is reduced to the so-called Stokes
law

σ = −pI + 2μ∇sv. (10)

Substituting into Eqs. (7)-(8) we arrive to

ρ
(
v,t + (v · ∇)v

)
− 2μ∇ · ∇sv + ∇p = ρb. (11)
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It is usual to rewrite this last equation as:

ρ
(
v,t + (v · ∇)v

)
− μ∇2v − μ∇(∇ · v) + ∇p = ρb. (12)

Under the incompressibility assumption (8), this last Eq. (12) is transformed into

ρ
(
v,t + (v · ∇)v

)
− μ∇2v + ∇p = ρb, in Ω × (0, T ). (13)

To solve the problemwemust prescribe an initial state as well as boundary conditions
given by

v(x, t) = vD(x, t), x ∈ ΓD, t ∈ (0, T ), (14)

where ΓD stands for the Dirichlet (essential) portion of the boundary and ΓN repre-
sents the Neumann or natural portion of the boundary:

n · σ(x, t) = t(x, t), x ∈ ΓN , t ∈ (0, T ). (15)

4.2 Time discretization

The motion equations can be grouped to

∇ · σ + ρb = ρ
dv

dt
= ρ

(
∂v

∂t
+ v∇ · v

)
, (16)

∇ · v = 0, (17)
σ = −pI + 2μ∇sv. (18)

The weak form of the problem associated to Eqs. (16), (17) and (18) is:
∫

Ω

2μD : D∗ dΩ −
∫

Ω

pI : D∗ dΩ = −
∫

Ω

ρbv∗ dΩ +
∫

Ω

ρ
dv

dt
v∗ dΩ, (19)

and ∫
Ω

∇ · v p∗ dΩ = 0, (20)

where the tensor D = ∇sv represents the strain rate tensor and b the vector of
volumetric forces applied to the fluid.

The second term in the right-hand side of Eq. (19) represents the inertia effects
during the flow. Time discretization of this term represents the discretization of the
material derivative along the nodal trajectories, which are precisely the characteristic
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lines related to the advection operator. Thus, assuming known the flow kinematics at
time tn−1 = (n − 1)Δt, we proceed as follows:

∫
Ω

ρ
dv

dt
v∗ dΩ =

∫
Ω

ρ
vn(x) − vn−1(X)

Δt
v∗ dΩ, (21)

where X represents the position at time tn−1 occupied by the particle located at
position x at present time tn, i.e.:

x = X + vn−1(X)Δt. (22)

So we arrive to∫
Ω

2μD : D∗ dΩ −
∫

Ω

pI : D∗ dΩ −
∫

Ω

ρ
vv∗

Δt
dΩ =

= −
∫

Ω

ρbv∗ dΩ −
∫

Ω

ρ
vn−1v∗

Δt
dΩ, (23)

and ∫
Ω

∇ · v p∗ dΩ = 0. (24)

where we have dropped the superindex in all the variables corresponding to the cur-
rent time step.

4.3 Algorithmical issues

The most difficult term in Eq. (23) is the second term of the right-hand side. The
numerical integration of this term depends on the quadrature scheme employed.

If we employ traditional Gauss-based quadratures on the Delaunay triangles, it
will be necessary to find the position at time tn−1 of the point occupying at time tn

the position of the integration point ξk (see Fig. 5):∫
Ω

ρ
vn−1v∗

Δt
dΩ =

∑
k

ρ
vn−1(Ξk)v∗(ξk)

Δt
ωk, (25)

where ωk represent the weights associated to integration points ξk, and Ξk corre-
sponds to the position occupied at time tn−1 by the quadrature points ξk.

If we employ some type of nodal integration, as in [9], this procedure becomes
straightforward, with the only need to store nodal velocities at time step t − 1. We
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FIG. 5: Determination of the position of quadrature points at time step t − 1.

discuss here the procedure to follow when employing Gauss quadratures on the De-
launay triangles. We proceed iteratively. Denoting by i the current iteration, we
apply

xk = Xi
k + vn−1(Xi

k)Δt, with xk = X0
k

until Xi
k ≈ Xi−1

k .
Since we are using an updated Lagrangian strategy, the computation of the term

vn−1(Xi−1
k ) requires a projection from the stored nodal velocities at time t−1. One

problem related to this projection is that the Delaunay triangulation is highly sensible
to slight nodal movements. However, the resulting interpolation is not sensible to
these changes (the associated Voronoi diagram is also non-sensible, see [22]) so it is
a reasonable assumption to consider the neighbourhood of a given integration point
as fixed (and therefore equal to that of the time step t). Many FE or meshless codes
do not consider the possibility of storing a previous nodal connectivity. We have
assumed that the number of natural neighbours of a given integration point does not
change during a time step, thus needing the storage of nodal velocities at time t − 1
only. It can occur that some of the nodes neigbouring the integration point at time t
were not actually its neighbours at time t− 1, but this does not constitute a problem,
since the number of natural neighbours of a point is usually high (much bigger than
three). The quality of the interpolation is thus guaranteed. In fact, this procedure
has shown to converge at a high speed, with no more than 3 iterations, at least for
reasonable time steps.
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5 Numerical examples

5.1 Broken dam problem

The simulation of the broken dam problem is a classical example in free-surface
simulations. We consider a rectangular column of water, initially retained by a door
that is instantaneously removed at time t = 0 (see Fig. 6).

When the door is removed, water flows under the action of gravity, considered
as 9.81 m/s2. Density of water is 103 kg/m3, and a viscosity of 0.1 Pa · s was
assumed. The mathematical model was composed of 3364 nodes. No remeshing,
addition or deletion of nodes was performed throughout the computation.

Fig. 7 shows a comparison between numerical results and experimental ones,
obtained from the literature [14]. As can be noticed, excellent agreement is found
between experimental and numerical results, despite the distortion of the triangula-
tion, shown in Fig. 8. A detail of the triangulation is shown in Fig. 9.

In Figs. 10 and 11 the error in mass conservation is depicted, which remains
always below 3%. The influence of the relationship between the parameter α and the
nodal parameter h on this error is deeply analyzed in [15]. In Fig. 12 the evolution
of the vertical component of the velocity is depicted.
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5.2 Rotating water mill

This example can be found in [12]. It represents a water mill, which is considered
rigid, moving with a prescribed velocity. The geometry of the domain is represented
in Fig. 13.

The model consisted of 2367 nodes, that remained the same throughout the sim-
ulation. Viscosity was set to 0.001 Pa·s. The mill moves with angular velocity of
0.5 rad·s−1. Some snapshots of the velocity field during the simulation are shown in
Fig. 14.

The simulation covered 90 degrees of rotation in the mill. The generated wave is
clearly seen.

6 Conclusion

In this paper we have presented our initial developments towards a lagrangian scheme
for FSI problems by employing the Natural Element Method. The Navier-Stokes
equations are integrated in a lagrangian setting by employing the method of char-
acteristics. By employing the NEM a standard coupling (in the FE sense) between
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FIG. 8: Evolution of the α-shapes in time for the broken dam problem.
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the fluid and solid domains can be done and thus the potential capabilities of the
proposed method.

This method can be now integrated in a block-iterative scheme in which the inter-
action with the solid domain can be solved by standard techniques, such as Newton-
Raphson or Picard methods.
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