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Abstract. The aim of this work is to develop a new numerical method to overcome the 
computational difficulties of numerical simulation of unsaturated impregnation in porous 
media. The numerical analysis by classical methods (F.E.M, theta-method, …) for this 
phenomenon require small time-step and space discretization to ensure both convergence and 
accuracy. Yet this leads to a high computational cost. Moreover, a very small time-step can 
lead to spurious oscillations that impact the precision of the results.  Thus, we propose to use 
a Self-organized Gradient Percolation (SGP) algorithm to reduce the computational cost and 
overcome these numerical drawbacks. The (SGP) method is based on gradient percolation 
theory, relevant to the calculation of local saturation. The initialization of this algorithm is 
driven by an analytic solution of the homogenous diffusion equation, which is a convolution 
between a Probability Density Function (PDF) and a smoothing function. Thus, we propose to 
reproduce the evolution of the capillary pressure profiles by the evolution of the standard 
deviation of the PDF. This algorithm is validated by comparing the results with the capillary 
pressure profiles and the mass gain curve obtained by finite element simulations and 
experimental measurements, respectively. The computational time of the proposed algorithm is 
lower than that of finite element models for quasi one-dimensional case. In conclusion, the SGP 
method permits to reduce the computational cost and does not produce spurious oscillations. 
The work is still going on for extension in 3D and the first results are promising. 
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1 INTRODUCTION 

The numerical modelling of the impregnation process requires a multiphysics model 
taking into account the material properties. Yet, it often demands large computing facilities. 

The goal of this paper is to propose a new approach, which doesn’t use classical 
modelling by partial differential equations and the associated numerical methods, to predict the 
capillary pressure profiles without spurious oscillations [1] and with reduced computational 
cost. To develop and present the basics of this method, the simplest case of non-reactive 
impregnation, for quasi one-dimensional problem, is developed.  

A new numerical algorithm based on the gradient percolation theory is proposed. The 
initialization of the algorithm is driven by an analytic solution of the homogeneous diffusion 
equation, which is a convolution between a Probability Density Function (PDF) and a 
smoothing function [2]. The evolution of the capillary pressure profiles with time is reproduced 
by the self-evolution of the standard deviation of the PDF. This model is therefore named Self-
organized Gradient Percolation model (SGP). In order to test this model, its solutions (i.e., the 
capillary pressure profiles and the mass gain curve) are compared with those obtained by F.E.M 
and by experiments, respectively. 

2 SELF-ORGANIZED GRADIENT PERCOLATION (SGP) MODEL 

2.1 Self-organized Gradient Percolation (SGP) model 

The Self-organized Gradient Percolation (SGP) model defines that the porous medium 

is considered as a random network model [3, 4] where each site � has a local state �(�) which 
should be transformed into the local average saturation and has Gaussian distribution [5] with 

mean �(�) and variance �� as: 

�(�)~�(�(�), ��) (1) 

The Eq. (1) shows that the local average saturation is driven by the PDF of Gaussian 
distribution that is used to construct the self-organization of the local profile such that: 

(i) its initialization is proved as an analytic solution of the homogeneous diffusion 
equation [2];  

(ii) for further time steps, the evolution of the capillary pressure profile should be 
reproduced by the self-evolution of the PDF.  

2.2 Initialization of the SGP model 

The SGP model aims at predicting the capillary pressure profile at any time that is 
inferred from a capillary pressure profile at initial time-step (i.e., initialization of the SGP 
model). As mathematically proven [2], the initialization is the analytic solution of the 
homogeneous diffusion equation (i.e. Richard’s equation [6]) as the following formulation: 

������, ��� = ������, ��� ∗ ������� (2) 
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where 〈∗〉 is convolution operator; ������� stands for a smoothing point-spread function;  

������, ���  is the function of the local average saturation at initial time-step ��, and is described 

as the PDF of a distribution with standard deviation �,  maximum saturation ����  and residual 

saturation �� as: 

������, ��� = �� + (���� − ��)��� �−
������

�

2��
� 

(3) 

where � characterizes the type of a distribution: � = 1 or � = 2 indicate that ������, ��� is 

the PDF for a Normal distribution or for a Laplace distribution by means of statistics, 
respectively. 

 

Figure 1: A simplified representation of the Eq. (3) 

The Eq. (3) might be presumed to be more simple and convenient in application by the  
Figure 1. To determine the capillary pressure profiles, it is needed to identify the evolution of 
the local average saturation. It is thus proposed to reproduce the evolution of the local average 
saturation by that of the standard deviation of the PDF.  

2.3 Time evolution 

Let us remark that at each time-step �, a standard deviation function is denoted by 

�������� to be different from constant standard deviation ��; the evolution of the abscissa � with 

time-step � is denoted by ���, �����. The evolution of standard deviation �� is thus defined by: 
�� = ���� + ���, ����� (4) 

The evolution of the standard deviation function at the second time-step, i.e. � = 1, is 
expressed by the following form: 

�������� = �� + ��������� − ��� = �� + (�� − ��)������� (5) 

where ������� is a function of the capillary pressure [7]. The general standard deviation 

function, i.e. � = �, is therefore deduced as follows: 

�������� = �� + ��������� − ��� = �� + ������ + ���, ������ − ��� ������� (6) 
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At the local scale, the pore space can be assumed as a capillary (vertical for 1D model 
proposed herein). Thus, the evolution of the abscissa � with time-step �, i.e. ���, �����, is 

driven by Poiseuille’s equation [8] as follows: 

���, ����� =
��

��
= � ∙ ������

� = � ∙ ����� + ��
�� = � ∙ ∆� 

(7) 

where � depends on capillary diameter and liquid properties, ������
�  and ��

� are the total and the 

hydrostatic pressure at time-step �, respectively; ∆� is the difference between capillary and 
hydrostatic pressures. In the case of the vertical capillary tube, the Eq. (7) points out that the 
transient simulation stops at the steady-state when there is no longer difference between 

capillary pressure and hydrostatic pressure (i.e., ∆� = 0). 

2.4 Continuity and Boundary Conditions 

As shown in the Eq. (2), a convolution procedure is first employed to introduce the 
continuity of the SGP model. Indeed, the procedure is related to the local average saturation 
and the smoothing point-spread function as the following formulation:  

�(�) = (� ∗ �)(�) = � �(� − �′)�(�′)

��∈�

 (8) 

where �(�′) =
�

�
∑�(�′) , Ω = {�′ ∈ ℤ�:		|�′| ≤ 1}, �(�′) is the Kronecker function, and � is 

number of site � ∈ Ω.  
 For impregnation in porous media, several boundary conditions related to the physical 
exchange made on the concerned interface are distinguished by: the case where liquid can/ 
cannot flow out of the boundary (i.e., the constant air pressure and the draining condition/ the 
undrained condition, respectively). The choice of the boundary conditions depends on the 
interpretation of the physical phenomena. In the SGP model, the convolution of the values on 
the boundary surface with the smoothing function is then employed to model the boundary 
conditions.  

3 THE VALIDATION OF THE SGP METHOD 

One-dimensional capillary rising tests were performed on porous samples [9]. The 
amount of impregnated liquid into the porous medium was measured by weighing the loss of 
liquid in the bath as can be seen in Figure 2. Porous material and liquid for the tests are reported 
in Table 1.  

Figure 2: The non-reactive impregnation test 

Test Porous sample Liquid 
1 Alumina 99% Glycerine 
2 Alumina 99% Oil 

 

Table 1: Materials and liquid for the tests 
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To validate the SGP method, a Finite Element (F.E.) model has been implemented in 
the software “ASTER” [9].  

Table 2 : Values of physical chracteristics used of the porous materials and the liquid 

Properties 
Values  

Units 
Test 1 Test 2 

Initial porosity 0.2 0.19  

Viscosity of the fluid, � 1.02 0.35 �� ∙ � 

Mass density of fluid, �� 1260 892 �� ∙ ��� 

Intrinsic permeability, ���� 9.5 × 10��� 7.44 × 10��� �� 

 

To fit the capillary pressure curve, two well-known models (c.f. Brook’s model and van 

Genuchten’s model) [10, 11] are employed where pressure reference �� or �� and empirical 

parameter � or � need to be determined. To apply the algorithm of the SGP model on both tests, 
the values of input data are reported in Table 3. 

Table 3 : Values of input data used for the SGP algorithm 

Test � (� �⁄ ) � or � �� or �� (Pa) 
1 1,16 ∙ 10�� 0,55 1100 
2 1,9 ∙ 10�� 2,62 4870 

3.1 Comparisons between numerical results and experimental data 

For  the tests 1 and 2, because there is no experimental data for the capillary pressure 
profiles, the mass gain curve obtained through the SGP model is compared with that obtained 
experimentally [9] (Figure 3). 

(a)                                                                                   (b) 

Figure 3: Measured and simulated mass gain curve: (a) for the test 1 and (b) for the test 2. 
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The Figure 3 shows that numerical results from the SGP algorithm fit well with experimental 
data. 

3.2 Comparisons between F.E and SGP results 

For the tests 1 and 2, the comparisons of the capillary pressure profiles between the SGP 
model and the FEM model are shown in Figure 4. 

(a)                                                                                          (b) 
Figure 4: The evolution of the simulated capillary pressure profiles: (a) for the test 1 and (b) for the test 2. 

The Figure 4 shows that F.E. results fit well with SGP results too. Concerning the 
comparisons between F.E. and SGP results for the test 2, the CPC from Brook’s model is 

employed, which is assumed to be a PDF of the Laplace distribution, i.e. � = 1 for the SGP 
model. Thus, the capillary pressure profiles obtained by the SGP model always remain the form 
of this PDF. That’s why the F.E. and SGP solutions are not exactly the same (as can be seen in 
the Figure 4 (b)). 

The computational costs for the two tests are also reported in Table 4. By comparisons 
of the CPU time, the Table 4 shows that the computational time of the SGP model is lower than 
the one of F.E.M. 

Table 4 :  Computational time of the SGP model and the F.E model. 

Test CPU time (seconds) 
SGP model F.E model 

� 6.52 25.5 

� 1.1 12.1 

 

Finally, the objectives of this study are entirely satisfied: (i) the solutions of the SGP 
method are free from spurious oscillations and (ii) the computational time is reduced.  

4 CONCLUSIONS 

In this study, a novel algorithm based on the gradient percolation theory, named Self-
organized Gradient Percolation (SGP) algorithm, is proposed. Here, the gradient percolation 
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theory is used to compute the local saturation. The link between the mathematics and the 
physical issue (i.e., the non-reactive impregnation phenomenon) is done thanks to the 
initialization of the algorithm by an analytic solution of the Richard’s equation. Furthermore, 
the convolution operator allowed to ensure the spatial continuity of the wetting fluid and to 
check the boundary conditions of the problem. The comparisons with experimental 
measurements show a good agreement for the quasi one-dimensional case of vertical 
impregnation. The comparisons with F.E.M exhibits a lower computational cost for the SGP 
method. First results are promising with respect to possible generalization to 3D case. 
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