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Optimal predictive eco-driving cycles for conventional and electric cars

D. Maamria ¢, K. Gillet ¢, G. Colin ¢, Y. Chamaillard ¢ and C. Nouillant ?

Abstract—In this paper, the computation of eco-driving cy-
cles for electric and conventional vehicles using receding horizon
and optimal control is investigated. The problem is formulated
as consecutive-optimization problems aiming at minimizing the
vehicle energy consumption under traffic and speed constraints.
The solving method is based on Dynamic Programming (DP).
The impact of the look-ahead distance on the optimal speed
computation is studied to find a trade-off between the optimality
and the computation time. Simulation results show that in
urban driving conditions, a look-ahead distance of 300m to
500m leads to a sub-optimality less than 0.6% in the energy
consumption compared to the global solution. For highway
driving conditions, a look-ahead distance of 1km to 2km leads to
a sub-optimality less than 0.7% compared to the global solution.

I. INTRODUCTION

Nowadays, improving the energy consumption linked to
transportation systems is among the major challenges facing
the automotive industry. Eco-driving is considered as a major
solution to face this challenge. In recent decades, engine
technology and car performances have improved rapidly
thanking to alternative propulsion technologies and engine
downsizing, while drivers have not adapted their behavior
(driving style). Eco-driving can be defined as a multi-criteria
optimization problem (fuel consumption, trip duration, driv-
ability, etc) of various tasks (navigation, guidance, stabiliza-
tion) under safety constraints [1]-[3].

The objective of eco-driving is to help the driver to
improve his manner of driving in order to reduce the vehicle
energy consumption. A human machine interface (HMI) inte-
grated in the dashboard of the vehicle proposes the speed and
the gear-box ratio set points to the driver. The computation of
these set-points can be formulated as a dynamic optimization
problem under some constraints: speed limitations, traffic
information, final time and total traveled distance [1], [4]-
[6]. The results reported in the literature show that the energy
saving via eco-driving depends on the nature of the trip.
In urban driving conditions, the energy saving may reach
20% while for highway trips, the energy saving is about 5 to
10% [3], [7]-[10]. Two scenarios depending on the horizon
of the available information can be distinguished:

o Off-line scenario: The constraints on the speed lim-
itations and the traffic information are fully known
in advance. In this case, an estimation of the upper
bound on the energy saving that can be reached through

“D. Maamria, K. Gillet, G. Colin and Y. Chamaillard are
with Univ. Orléans, PRISME, EA 4229, F45072, Orléans, France.
djamaleddine.maamria@gmail.com

bC. Nouillant is with PSA Peugeot Citroén, Direction Recherche Inno-
vation & Technologies Avancées (DRIA), France

eco-driving, can be computed through optimal control
tools. In addition, heuristic driving rules to improve the
vehicle fuel consumption may be extracted from the
obtained optimal solution: for example, anticipate traffic
flow, drive at a low engine speed and shift up early.
This kind of calculation can be, for example, performed
using cloud computing. This question was addressed for
conventional vehicles in [7], [9], [11], for electric cars
in [1], [8], [12], [13] and for hybrid electric cars in [5],
[11], [14]-[16].

¢ On-line scenario: The future driving conditions are par-
tially known for a given time or distance horizon usually
called e-horizon. The information can be retrieved from
many sources such as ADAS systems, sensors and
navigation systems (Global Positioning System GPS
unit and satellite navigation). Based on the available
information, the optimizer has to find the optimal set
points of the vehicle speed and the gear-box ratio in
real time. The set points obtained will be sent to the
driver or to a Cruise controller [17] (in the case of
autonomous cars) and they have to be tracked. This
question was mainly studied for trucks (conventional
and hybrid) [17]-[20] where the roadway grade is
among the biggest contributors to high fuel consump-
tion. The objective was to find the speed and gear-box
ratio set-points that minimize a trade-off between the
fuel consumption and the trip duration on a predefined
speed range. The studies in [21], [22] deal with an eco-
driving system using Model Predictive Control (MPC)
within a given prediction horizon for passenger cars
in an urban road network with complex traffic flows.
The study in [23] highlights the potential of real-time
vehicle speed optimization as a mechanism for energy
saving. A driver feedback system, designed using DP,
was demonstrated in a test vehicle that uses the optimal
velocity profile for the upcoming road. The prediction
horizon was arbitrarily set to 1.5km.

This paper follows the same approach as the second sce-
nario and pushes it further for passenger (conventional and
electric) cars. Depending on the length of the e-horizon, the
on-line scenario will lead to a sub-optimality in the energy
saving with respect to the global optimum (full knowledge
of the future driving conditions). We wish, by using MPC
and DP, to select the value of the look-ahead horizon in order
to minimize the induced sub-optimality in the energy saving
while keeping the algorithm computation time reasonable.
For this, various values of the e-horizon are considered and
the induced sub-optimality compared to the global optimum



(where the future driving conditions are known in advance)
will be quantified. The choice of the look-ahead distance will
be based on the optimality/computation time balance.

The paper is organized as follows. In Section II, the vehicle
model is described. The computation of eco-driving cycles
is detailed in Section III. Section IV presents the proposed
predictive scheme. Numerical and simulation results are
discussed in Section V for conventional and electric cars.
In light of the results, some conclusions on the choice of the
look-ahead distance are drawn.

II. VEHICLE MODELING
A. Motion equations

The vehicle is modeled in a vertical plane. According to
Newton’s law of motion, the vehicle speed v satisfies the
following differential equation

. dv(r)
dt
where F; is the traction force provided by the prime mover, F;,
is the sum of resistance forces and m is the total vehicle mass
including inertia of rotating parts. The force F, comprises
the rolling resistance force, the aerodynamic drag force and
a force due to the road grade. Its expression is given by

:Fz(t)_Fr(t)v (1)

Fi(t) = co+c1-v(t) +cz-v(1)?, )

where ¢;, i = {0,1,2} are the coefficients of the road
load equation. This model considers only the forces in the
longitudinal direction.

B. Prime mover

In the case of a conventional vehicle, the prime mover
is an Internal Combustion Engine (ICE). In this study, the
ICE is a Diesel engine. This choice is not restrictive as the
approach can be easily extended to gasoline engines. The
fuel consumption r1y [g/s] is computed through a look-up
table as a function of the engine torque 7, [N.m] and the
engine speed @, [rpm] (see Figure 1)

iy =i (0, Te). 3)

In the case of an electric car, the prime mover is an electric
machine. It is modeled by a quasi-static map describing the
electric power (see Figure 2). This map usually includes
the losses in the electric machine and the power electronic
devices. The electric power P, is of the form

Pm:Pm(w&Te)- (4)

C. Battery model

The battery is represented by an equivalent circuit model
comprising a voltage source U,., in series with an electric
resistance R, both of which vary with &, the battery state
of charge (SOC) [24], [25]. The expression of the battery
current I, is given by [24]
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Fig. 1. Specific fuel consumption SFC [g/kWh] of the ICE as a function
of the engine torque and engine speed. For confidentiality reasons, the data
are normalized.
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Fig. 2. Electric Machine Power [kW] as a function of the electric machine
torque and electric machine rotational speed.

In the study [13], it was shown that neglecting the dynamics
of & in the eco-driving cycle computation leads to an accept-
able sub-optimality in the energy saving (less than 0.5%).
The inner (electrochemical) battery power is

Pech(va Te) = Ib(V» Te) “Upey-

The dynamics of £ is given by
dg(r) _

dt Qo ’
where Qg is the nominal battery capacity.

Ip(t)

D. Transmission

The prime mover torque T, is related to the driver’s torque
demand 7, at the wheel by the relation

Ton(t) = riire - Fy (1) = Ngb - Rep (1) - Ry - Te (1), &)

where Ry, is the gear-box ratio, 7, is the constant gear-
box efficiency and R; is the differential ratio. The torque T,
can be positive (traction) or negative (braking). Similarly, the
rotational speed @, is related to the vehicle speed v by

R 20,

Ttire

a)e(t) = Rgb(t)'



The model parameters are summarized in Table I. The
numerical values are omitted for confidentiality reasons.

TABLE I
SYSTEM PARAMETERS

Acronym | Description Unit
m Vehicle mass kg
Ttire Wheel radius m
co Constant coefficient of the road load N

cl Linear coefficient of the road load N/(m/s)
c Quadratic coefficient of the road load | N/(m/s)?
Ngb Gear-box efficiency —
Rgp Gear-box ratio -
R; Differential ratio —

III. PROBLEM FORMULATION AND OFFLINE SOLUTION

For a fixed road, the idea of eco-driving is to find the
best vehicle speed profile that minimizes the vehicle energy
consumption. The vehicle starts from a point A at a velocity
vy (> 0) and must reach a destination point B at a predefined
time ¢y, with a velocity v; (> 0) under some constraints:
speed limitations and traffic constraints [6], [8]. This question
can be solved using optimal control theory [1], [6].

A. OCP formulation

The cost function to be minimized over a fixed time
window of duration #7 is

= /0 7 L(@e(t)

In the case of a conventional vehicle, L is the fuel consump-
tion 7y given by equation (3) while in the case of an electric
car, L is the electrochemical battery power P, given by
equation (4).

The control variable u is composed of two components:
the torque 7, and the gear-box ratio R,

T,(t))dt.

u(t) = [Te(t), Rep(1)]-

The considered gear-box has 6 ratios in the case of the
conventional vehicle and has only one ratio for the electric
vehicle. This optimization problem is carried out under the
following dynamical constraints

dv(t) B
M= ), 0= ©
dx(t) B

7 = (), x(0) =0, @)

where x is the position of the vehicle and the non-linear
function f is calculated by combining (1, 2, 5).

Due to the limitations of the vehicle speed v, of the torque
T, and of the gear-box ratio R,,, the optimization must
be performed under the following mixed state and input

constraints
v € [0, vax(x)], 3
fvu) € [@min, @max)s 9)
Te S [Tmm(we) max(a)e)] (10)
©, € [Opnin, Omax, (11)
x(tp) = D, (12)
v(ty) = i, (13)

where V.. (x) is the vehicle speed limitation at position x,
D is the total traveled distance, v is the desired final speed,
Tnin and T,,, are the maximum and the minimum torque
given by look-up tables as functions of the prime mover
rotation speed ®, (see Figures 1 and 2). In addition, the
vehicle acceleration is constrained between its lower and
upper bounds (@uin, Amay) in (9).
To summarize, the OCP is
f
(OCP) : muin/O L(v,u)dt (14)
under the dynamics (6, 7), the (mixed) state and input
constraints (8, 9, 10, 11), and the final constraints (12, 13).
Thus, the vehicle speed can be computed by using (6) once
the control variable u is optimized and the initial condition
of the vehicle speed is known.

B. Speed limitations

In this study, to specify the speed limitations, a certain
(fixed) margin e; on an initial driving cycle speed is consid-
ered

_ v(x) +ey, V(X) > 07
Vmar(¥) = { 0, v(x) =0,

where v(x) is the vehicle speed at the position x of the initial
driving cycle which is used as a reference of comparison
to point out the benefit of eco-driving in terms of fuel
consumption reduction. Other methods to compute speed
limitations can be considered [7], [14]. For example, the
speed limits can be given by the traffic signs (legal speed
limits) or provided by a cloud server depending on the
vehicle position. It should be pointed out that the speed limits
computation method does not impact the solving method.

C. Solving method

To solve the (OCP) defined in (14), several methods can
be used: Pontryagin Minimum Principle (PMP) or Dynamic
Programming (DP). Because of the non-linear nature of
the problem under consideration and the mixed state-input
constraints (which are activated almost all the time), methods
based on PMP are more complicated to implement [26].
For this reason, the method proposed here is based on
DP [27], [28]. As suggested in [2], [7], the time-based OCP
is transformed into a distance-based OCP in order to reduce
the computation time. If the position space is discretized in
N fixed steps of length Ax, the time step At(k), k=1:Nis
variable and is calculated from the vehicle speed v(k) and



the vehicle acceleration a(k) by solving the following second
order equation [7]

Ax= (k) A1k +v(K) - Ar(R).

The final constraint on the vehicle position (12) is fulfilled
by construction (D = N -Ax). An additional term f - Az(k) is
added to the cost function as follows:

k=N

Y [L(v(k),u(k)) + B] Ar (k).

k=1

The parameter 3 penalizes the final time t, = Y, At(k) to
obtain almost the same time duration as the initial driving
cycle. The studies in [7], [29] show that the relation between
tr and B is monotone so that #; can be tuned.

IV. PREDICTIVE ECO-DRIVING CYCLE COMPUTATION

Optimal strategies obtained by DP or any other method
are computed using the full knowledge of the future driving
constraints (speed limitations and traffic information). In real
situations, these future driving conditions are uncertain. They
depend on many factors such as local traffic, infrastructure
status, non-vehicle actors and weather conditions. To deal
with this kind of situation, approaches based on Model
Predictive Control (MPC) techniques are considered as an
effective solution [30]-[32].

The idea of MPC is the following: the future driving
conditions are only known for a look-ahead distance Dy < D
and the speed trajectory will be recalculated every traveled
distance Dy called optimization frequency where Dy < Dy.
The total traveled distance D is divided into n intervals
D;, i =1:n where n is the ratio between D and the Dy.
The previous OCP described in (14) will be solved n times

1i

(OCP) - muin/ L, u)dt (15)

fi
under the dynamics (6, 7), the (mixed) state and input
constraints (8, 9, 10, 11). The time #; corresponds to the
moment when the vehicle reaches the position (i-Dy) while
the time #;1; corresponds to the moment when the vehicle
reaches the position (i-Dy+ Dy). Thus, the constraints on
the vehicle position are

x(t[-) = i~Df,
x(t,-+1) = i~Df—‘rD0.

The initial vehicle speed at time #; is given by the final speed
reached at the end of the previous segment. The final speed
value is free at the end of each segment except for the last
segment:

v(tn) =V,

where v; is the desired final speed at the end of journey.
The optimization scheme is illustrated in Figure 3. The
global problem for a traveled distance of D is divided
into n sub-problems solved successively. At each traveled
distance Dy, the speed limitations and the traffic information
are updated. A new vehicle speed trajectory is calculated for

a distance horizon Dy by solving the OCP (15) using the
method described in Section (III-C). The computed speed
trajectory has to be followed by the driver. To avoid the
effects due to human interaction, the vehicle is assumed to
follow the speed set points precisely (in simulation).

Look-ahead distance D,

DU T

Optimization 3

Optimization i
.

x(0) =0

Fig. 3. Predictive algorithm scheme for eco-driving.

Figure 4 shows the inputs, the outputs and the parameters
of the algorithm. The inputs are the speed limitations, traffic
information and road grade. The outputs of the algorithm are
the vehicle speed and the gear-box ratio set points to the low
level controllers. The parameter D¢ controls the launch of the
algorithm: its value has to be chosen to find a good trade-off
between the optimality of the solution and the computation
time. The algorithm can also be launched in the case of
sudden events: change in the traffic constraints, appearance
of any other barriers (persons crossing the road), difference
between real speed and set point. By this methodology, a
feedback is introduced.

Triggered at D/ New event

Speed limitations,
traffic information,
road grade

Choice of (Do, D) EEED|

Speed set
points to low
level controller

Optimization
Algorithm

Fig. 4. Algorithm inputs and outputs.

V. NUMERICAL RESULTS

Five driving cycles were selected: ECE-15 (Urban Driving
Cycle UDC), EUDC (the Extra-urban driving cycle), WLTC
(the Worldwide harmonized Light vehicles Test Cycle), the
Artemis Urban and Artemis Rural driving cycle [33]. The
duration ¢y without stop phases, the total traveled distance
D, the final SOC (electric case) and the fuel consumption
(conventional case) for each initial driving cycle are given
in Table II. The value of ¢; for the speed limitation was
arbitrarily fixed to 2km/h.

A standard computer equipped with an Intel Core 15-4590,
CPU 3.30GHz with 8GB of RAM was used. The look-ahead
distance Dy for the six scenarios tested is given in Table III.

Scenario I is considered as a reference of comparison
(global optimum) in this study as the look-ahead distance
Dy equals the total traveled distance: full knowledge of the



TABLE I
INITIAL DRIVING CYCLES CHARACTERISTICS

Driving Cycle tr[s] | D[km] | SOC(tf) [%] | Consumption [g]

ECE-15 540 4 83.89 202.3

Artemis Urban 682 4.5 79.95 215.7

Artemis Rural 1053 17.3 54.16 742

WLTC 1574 22.7 37.26 973.3

EUDC 360 6.9 75.01 299.6
TABLE III

Dy [KM] FOR THE VARIOUS SCENARIOS

Scenario 1 | uar |1 | v VI
Dy [km] | D | 4 3 2 1 0.5

future driving constraints. The optimization frequency Dy
was arbitrarily chosen as follows

D, for Scenario I,
Df = Do ) (16)
> otherwise.

For the DP parameters, a distance step of Ax = 10m was
used in the case of the ECE and the A. Urban and Ax = 20m
for the other driving cycles. This value of Ax was chosen so
as to get a time step approximately around 1s [29]. The value
of B is tuned iteratively such that all the eco-driving cycles
and the initial driving cycles have almost the same duration
(with an error < 0.5% on the final time t¢). This constraint
on the trip duration allows us to make a fair comparison
between the initial and the computed eco-driving cycles.

The objective in this study is to find the most suitable
choice of Dy for which the sub-optimality induced by the
receding horizon strategy with respect to the global solution
is reduced while keeping the computation time reasonable.
The final aim is an embedded algorithm to compute the
optimal vehicle speed set-points. Two cases are studied:
electric and conventional.

A. Case of an electric car

The cost function L is the electrochemical battery
power P,. The control variable is the electric ma-
chine torque 7,. The following mesh parameters were
used: 0.02m/s for the vehicle speed and 2N.m for the electric
machine torque. The initial value of the SOC was 90%.

For scenario /, the results in terms of energy consumption,
energy saving through eco-driving with respect to the initial
driving cycle and computation time ¢ are given in Table IV.

TABLE IV
RESULTS OF SCENARIO I (GLOBAL OPTIMUM): ELECTRIC CASE

SOC(ty) [%] | Energy reduction [%] | o [s]
ECE-15 85.09 19.6 3.5
A. Urban 84.63 46 4.6
A. Rural 59.74 15.6 16.2
WLTC 50.29 24.7 24.3
EUDC 76.86 12.3 6.8

Figure 5 summarizes the sub-optimality in [%] of the
tested scenarios with respect to scenario /. The extra-energy
consumption with respect to scenario I increases when the
look ahead distance Dy decreases, and its maximum value
is less than 1.4%. It should be pointed out that the energy
saving of scenario / with respect to the initial driving cycle
is at least 12.3% (see Table IV): in the worst case, the energy
saving with respect to the initial driving cycle is 10.9%.

1 Extra-Energy consumption [%)]

—6—ECE-15
2} A. Urban
) + A. Rural
WLTC
e Eupc

08 T
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Scenar | Scenar Il Scenar lll Scenar IV ScenarV  Scenar VI

Fig. 5. Sub-optimality in the energy consumption [%] versus scenarios of
Table III: Electric case.

Two cases are distinguished:

¢ Driving cycles with low mean speed value (ECE-15
and A. Urban): the maximum sub-optimality is less
than 0.6% for scenario VI. When Dy = 0.3km and Dy =
0.15km (case not presented in Table III), the sub-
optimality reaches 0.9% for the ECE-15.

o Driving cycles with high mean speed value (A. Rural,
WLTC, EUDC): scenario V where the sub-optimality is
less than 0.3% can be considered as a good choice.

The vehicle speed trajectories for the Artemis Rural cycle
are given in Figure 6. When Dy > lkm, the eco-driving
speed trajectories are similar. When Dy < 1km, a problem
of vehicle speed drops appears because the vehicle speed is
free at the end of each segment. The value of Dy has to be
decreased in order to minimize this phenomenon.

120

100

g0l = = — mitial Driving cyce. .

Vehicle Speed [km/h]
@
3

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

Fig. 6. Vehicle Speed [km/h] for the Artemis Rural cycle: Electric case.



The mean computation time for each optimization and
the number of optimizations n for the various scenarios are
given in Table V. These mean time values represent the time
needed to get the new speed trajectory at each iteration.
The number of optimizations represents the load of the CPU
and the electric energy consumption associated to this use
during the trip. As can be seen from this table, the mean
computation time is low and approximately constant for each
scenario (in the same column): its value for scenarios V
(EUDC, A. Rural and WLTC cases) and VI (ECE-15 and
A. Urban cases) is 0.5s in the worst case (the time needed
to travel 7.5m if vehicle speed is 50km/h and 15m if vehicle
speed is 100km/h). This time is always lower than the time
needed to travel a distance Ax (the distance step in the DP).

TABLE V
MEAN COMPUTATION TIME [S] FOR EACH ITERATION AND THE NUMBER
OF OPTIMIZATIONS n (BETWEEN BRACKETS) FOR THE VARIOUS
SCENARIOS: ELECTRIC CASE

11 111 % v Vi

ECE-15 1703) | 183) | 12() | 0.7(9) | 04 (17)
A Urban | 21 (3) | 23(3) | 14(5 | 08(9) | 04 (18)
A Rural | 2.6 (9) | 1.9 (12) | 1.1 (I8) | 0.5 (35) | 0.3 (67)
WLTC 26 (12) | 1.8 (16) | 1.2 (23) | 0.5 (46) | 0.3 (88)
EUDC 24(@) | 18(3) | 1.1(7) | 05 (14) | 03 (27)

B. Case of a Conventional vehicle

The cost function L is the fuel consumption 1. The
control variables are the engine torque 7, and the gear-box
ratio Rgp,. The following mesh parameters are chosen based
on the study [29]: Av = 0.1m/s for the vehicle speed and
AT, = 2N.m for the engine torque.

For scenario I, the results in terms of fuel consumption,
fuel saving through eco-driving with respect to the initial
driving cycle and computation time ¢ are given in Table VI.

TABLE VI
RESULTS OF SCENARIO / (GLOBAL OPTIMUM): CONVENTIONAL CASE
Consumption [g] | Fuel saving [%] o [s]
ECE-15 125.6 37.9 5.8
A. Urban 140 35.1 7.6
A. Rural 592.3 19.9 27.1
WLTC 755.9 22.3 41
EUDC 246.2 17.8 11.5

The induced sub-optimality in [%] with respect to sce-
nario / is given in Figure 7. The extra-fuel consumption
increases when Dy decreases, and its maximum value is less
than 3.2%. In the case of the ECE-15 and the Artemis Urban,
the sub-optimality is less than 0.2% for all the considered
scenarios. In the case of the Artemis Rural, the WLTC and
the EUDC, scenario V, where the sub-optimality is less than
0.7%, is considered as a reasonable choice. It should be
pointed out that the fuel consumption reduction of scenario /
with respect to the initial driving cycle is at least 17% (see

Extra-fuel consumption [%]

2.5} | —%—EUDC
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Fig. 7. Extra-fuel consumption [%] versus scenarios of Table III: Conven-
tional case.

Table VI): in the worst case, the fuel saving with respect to
the initial driving cycle is reduced to 14%.

The vehicle speed trajectories for the EUDC case are
given in Figure 8. The speed trajectories are similar for
Dy > 2km. When Dy is lower than 2km, a problem of

Vehicle speed [km/h]

0 50 100 150 200 250 300 350
Time [s]

Fig. 8. Vehicle Speed [km/h] for the EUDC cycle: Conventional case.

vehicle speed drops appears as in the electric case. To
reduce this phenomenon, the value of Dy must be decreased
when Dy <= lkm as illustrated in Figure 8 where Dy =
1km and Dy = 0.26km. The sub-optimality is also reduced:
for Dy = 0.5km, the sub-optimality is 0.7% and for Dy =
0.26km, the sub-optimality is 0.5%. On the other hand, the
number of iterations n increases from 14 for Dy = 0.5km
to 27 for Dy = 0.26km.

The number of optimizations n and the mean computation
time for each optimization for the various scenarios are given
in Table VII. For scenarios V (case of the EUDC, the A.
Rural and the WLTC) and VI (case of the ECE-15 and the
A. Urban), the computation time is about 1s in the worst
case: the time needed to travel 28m if the vehicle speed
is 100km/h. This time is always lower than the time needed
to travel a distance of 2Ax (the distance step in the DP). This
result is promising to embed the proposed algorithm.



TABLE VII
MEAN COMPUTATION TIME [S] FOR EACH ITERATION AND THE NUMBER
OF OPTIMIZATIONS n (BETWEEN BRACKETS) FOR THE VARIOUS
SCENARIOS: CONVENTIONAL CASE

11 11 v \% VI
ECE-15 | 293) | 303 2() | 12(9) | 07 (17)
A Urban | 36(3) | 4(3) | 25() | 1.4(9) | 0.7 (13)
A Rural | 46(9) | 34 (12) | 21 (18) | 1(35) | 05 (67)
WLTC 46 (12) | 33 (16) | 2.1 (23) | 0.9 (46) | 0.5 (88)
EUDC 420@) | 31(5) | 2(7) | 09 (14 | 0.4 (27)

VI. CONCLUSION

The computation of eco-driving cycles for electric and
conventional vehicles using receding horizon control was
addressed and formulated as an optimal control problem.
The objective was to study the impact of the look-ahead
distance on the optimality of the solution. The result is that,
for the two systems considered, in the case of urban driving
cycles (mean speed values less than 35km/h), a look-ahead
distance of 300m to 500km leads to a sub-optimality less
than 0.6% in the energy consumption compared to the global
solution (where the future driving conditions are known).
This result is interesting to size sensors that predict future
driving conditions. For highway driving cycles, a look-ahead
distance of 1km to 2km can be used as the induced sub-
optimality in the energy consumption is less than 0.7%.
Moreover, the computation times are relatively small (1s
in the worst case): lower than the time needed to travel a
distance of 30m. This result is a first promising step for a
real-time computation using an Engine Control Unit (ECU).

To embed the algorithm, two parameters have to be tuned:
the first parameter is used to reach almost the same final
time as the initial driving cycle. The second parameter is the
frequency with which the optimization is launched so as to
find a trade-off between optimality and computation time.
Optimizing the tuning of these two parameters is the subject
of current investigations and the first results are promising.
It is also planned to extend this study to hybrid electric cars.
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