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Introduction

Spurred by environmental requirements, economic factors and energysaving interests, eco-driving has attracted much attention from the scientific community in the last decade. It is now considered as a major solution to reduce the energy consumption linked to transportation. It can be seen as a multi-criteria optimization (fuel consumption, duration, drivability, etc) of various tasks (navigation, guidance, stabilization) under safety constraints.

In other words, the idea of eco-driving is to calculate the vehicle velocity trajectory that minimizes the vehicle energy consumption under constraints: speed limitations, final time and total traveled distance. This question can be solved using optimal control tools.

For conventional vehicles, fuel consumption, engine emissions or any combination of both over a fixed time window is the cost function to be minimized [START_REF] Mensing | Vehicle trajectory optimization for application in eco-driving[END_REF][START_REF] Mensing | Ecodriving: an economic or ecologic driving style?[END_REF]. For full electric cars, the cost function to be minimized is the electric power requested by the electric machine [START_REF] Dib | Optimal energy management for an electric vehicle in eco-driving applications[END_REF][START_REF] Petit | Optimal drive of electric vehicles using an inversion-based trajectory generation approach[END_REF][START_REF] Mensing | Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving[END_REF][START_REF] Sciarretta | Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem[END_REF][START_REF] Miyatake | Theoretical study on ecodriving technique for an electric vehicle considering traffic signals[END_REF]. The duration of the trip can be considered as an additional degree of freedom in the optimization. A trade-off between the fuel consumption and the duration can be found. Two dynamics are usually considered: the position and the speed of the vehicle. For these two architectures (conventional and electric), two control variables are used: the engine or the electric machine torque and the gear-box ratio while the main constraints bear on speed limitations, vehicle stops and total traveled distance (F. [START_REF] Mensing | Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving[END_REF][START_REF] Sciarretta | Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem[END_REF] However, having an additional energy source increases the complexity of the models and thus the algorithms used to calculate eco-driving cycles as mentioned in [START_REF] Van Keulen | Velocity trajectory optimization in hybrid electric trucks[END_REF]. In the case of hybrid electric vehicles, additional state and control variables have to be considered in the optimization: the battery State Of Charge (SOC) with a constraint on its final value and the electric machine torque.

The work in [START_REF] Kim | Model predictive control of velocity and torque split in a parallel hybrid vehicle[END_REF] presents a strategy that optimizes both the speed profile and the torque split between the electric machine and the engine using a Gradient method. More recently, the algorithms in (F. [START_REF] Mensing | Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving[END_REF][START_REF] Ngo | An optimal control-based algorithm for hybrid electric vehicle using preview route information[END_REF] combine dynamic programming with the Energy Management System (EMS) design for a Hybrid Electric Vehicle (HEV) to calculate eco-driving cycles. A bi-level approach that reduces computation time was suggested in [START_REF] Ngo | An optimal control-based algorithm for hybrid electric vehicle using preview route information[END_REF]. The optimal control strategy is calculated by decoupling the optimization of the control variables. In a first step (an outer loop) the speed trajectory is optimized assuming that the vehicle is propelled only by the internal combustion engine or the electric machine. In a second step, the power split between the engine and the electric machine is optimized in an inner loop for a given vehicle speed, gear-box ratio and wheel torque. The missing point is the quantification of the sub-optimality induced by the method used. A similar approach was used in [START_REF] Sciarretta | Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem[END_REF] where an overview of eco-driving problems for various architectures (electric, conventional and hybrid electric cars) was given. Analytical solutions were suggested in the case where the gear-box ratios are not optimized.

Later, in [START_REF] Heppeler | Fuel efficiency analysis for simultaneous optimization of the velocity trajectory and the energy manage-ment in hybrid electric vehicles[END_REF], the authors worked on the direct optimization of the EMS for an HEV with a small deviation from the given desired vehicle velocity as an additional degree of freedom. It was shown that the additional degree of freedom for the velocity decreases fuel consumption by about 6.8% compared to a real-time power split strategy and by about 4.3% compared to an off-line power split algorithm with a fixed velocity trajectory. The work in [START_REF] Bouvier | Determination and comparison of optimal eco-driving cycles for hybrid electric vehicles[END_REF] compared two approaches to calculate eco-driving cycles for a parallel HEV in terms of fuel saving. The study concluded that in order to generate the best speed trajectory in terms of fuel consumption, it is necessary to consider that the vehicle is an HEV: this consideration saves up to 3%. However, the comparison of the computation time of the two methods was not investigated. This paper follows the path described above and pursues the analysis further. A parallel HEV equipped with a Diesel engine is considered. This choice is not restrictive, as the methodology presented here could be easily transposed to other cases of interest. The objective is to calculate, within a reasonable time, an eco-driving cycle for a HEV under final time, distance and SOC constraints while fulfilling the speed limits. We wish to find a trade-off between the accuracy of the DP solution and the complexity of the algorithms used to obtain this solution (an accuracy/complexity balance).

For this purpose, four methods to calculate eco-driving cycles are considered:

• The first method is based on solving directly the optimal control problem associated to eco-driving for HEVs.

• The second method is based on reducing the number of state variables by introducing a tuning parameter to satisfy the SOC final constraint.

• The third method is based on decoupling the optimization of the control variables into two steps. In a first step, an eco-driving cycle is calculated assuming that the vehicle is propelled only by the engine.

In the second step, to follow the calculated eco-driving cycle, an off-line energy management strategy is designed to optimize the torque split and the gear-box ratios.

• The last method is similar to the previous one where only the torque split is optimized in the second step.

These methods are compared in terms of fuel consumption, state trajectories, computation time of the DP and memory (RAM) use. Based on the numerical results, a conclusion about the chosen trade-off between accuracy/complexity is drawn.

The paper is organized as follows. In Section II, the vehicle model is described. The calculation of eco-driving cycles is detailed in Section III.

Section IV details the proposed numerical methods to calculate eco-driving cycles for an HEV. Numerical and simulation results are discussed in Section V. In light of the results, some conclusions on the most convenient method to be used are drawn based on a trade-off between optimality/complexity.

Vehicle Modeling

The system considered here is a dual shaft parallel mild hybrid with an electric machine (EM ) connected to the engine by a belt (Figure 1).

The gearbox is between the power-train and the wheel. This architecture allows regenerative braking (the electric machine works as a generator during braking phases), hybrid and zero-emission vehicle (ZEV) modes. Due to the architecture choice, during the ZEV mode, the engine injection is cut off and the electric machine produces power, keeping the engine rotating. This system was used in [START_REF] Michel | Optimizing fuel consumption and pollutant emissions of gasoline-hev with catalytic converter[END_REF][START_REF] Simon | Gasolinehev equivalent consumption and pollutant minimization strategy[END_REF]. 

Motion equations

The vehicle is modeled in a vertical plane. According to Newton's law of motion, the vehicle speed v satisfies the following differential equation

m • dv(t) dt = F t (t) -F r (t), (1) 
where F t is the traction force to be provided by the engine, F r is the sum of resistance forces and m is the total vehicle mass including the rotating parts. The force F r comprises the rolling resistance force, the aerodynamic drag force. Its expression is given by

F r (t) = c 0 + c 1 • v(t) + c 2 • v(t) 2 , (2) 
where c i , i = {0, 1, 2} are the constant coefficients of the road load equation.

To take the road grade α into account, the coefficient c 0 will be not constant and its expression will be

c 0 = c a 0 + m • g • sin(α), ( 3 
)
where g is the acceleration of gravity, c a 0 is the road load coefficient. This model considers only the forces in the longitudinal direction. In this study, the road grade is null.

Internal Combustion Engine (ICE)

The ICE under consideration is a Diesel engine. The fuel consumption ṁf (g/s) is computed through a look-up table as a function of the engine rotational speed (ω eng ) and the effective engine torque (T eng ) (see Figure 2) ṁf = ṁf (ω eng , T eng ).

(4)

Electric machine model

The electric machine is modeled by a quasi-static map describing its electric power. The electric power P m consumed (in traction mode) or supplied to the battery (in recuperation mode) is of the form

P m = P m (ω el , T el ), (5) 
Normalized Engine Torque Normalized Engine Speed where T el is the electric machine torque and w el is the electric machine rotational speed. This map includes the losses in the electric machine and the power electronic devices. The electric machine torque is limited by speeddependent upper and lower bounds of the form (bold blue and black lines in
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Figure 3)

T elmin (ω el ) ≤ T el ≤ T elmax (ω el ). (6) 

Battery model

The battery of Li-ion type is represented by an equivalent circuit model comprising a voltage source U ocv in series with an electric resistance R bat , both of which vary with ξ, the battery state of charge (SOC) (Guzzella and , 2013;[START_REF] Badin | Hybrid Vehicles[END_REF]. The expression of the battery current I b is

Sciarretta

I b = 1 2R bat (ξ) U ocv (ξ) -U 2 ocv (ξ) -4R bat (ξ) • P b , (7) 
where U ocv and R bat are given by look-up tables as functions of ξ (see Figures 4 and5) and P b is the power requested from the battery given by

P b = P m . (8) 
In reality, U ocv and R bat depend also on the battery mode (discharging or charging). These dependencies are neglected in this study as they will not 3.9
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SOC [%] U ocv [V] Figure 5: U ocv [V] dξ(t) dt = - I b (t) Q 0 , (9) 
where Q 0 is the nominal battery capacity. In order to simplify the notation, the dynamics of ξ considering a given initial condition ξ 0 is written as

dξ(t) dt = g(v(t), ξ(t), T el (t)), ξ(0) = ξ 0 . ( 10 
)
The inner (electrochemical) battery power is defined by

P ech (v, ξ, T e ) = I b (v, ξ, T el ) • U ocv (ξ). (11) 

Transmission

The engine torque T eng and the electric machine torque T el are related to the torque required at the wheel T wh by

T wh (t) = η gb • R gb (t) • R t • [T eng (t) + R el • T el (t)] , (12) 
where R gb is the gear-box ratio, r tire is the wheel radius, η gb is the gearbox efficiency (assumed to be constant), R el is the constant motor-to-wheel transmission ratio and R t is the differential ratio.

In the case of a conventional vehicle (with only an ICE), T wh can be calculated using the formula

T wh (t) = η gb • R gb (t) • R t • T eng (t). ( 13 
)
During braking phases, the maximum energy allowed by the electric machine is recovered and is used to recharge the battery. The remaining part is dissipated by the braking system.

Similarly, the rotational speed ω eng of the ICE and ω el of the electric machine are related to the vehicle speed v by

ω el (t) = R el • ω eng (t) = R gb (t) • R t • R el • v(t) r tire . (14) 
The model parameters are summarized in Table 1. The coefficients of the road load equations are omitted for confidentiality reasons.

Problem formulation

For a fixed road, the eco-driving methodology consists of finding the best speed profile minimizing the vehicle power consumption knowing that the vehicle starts from a point A at a given speed v 0 (≥ 0) and must reach a destination point B at time t f , with a velocity v 1 (≥ 0). For an HEV, an additional constraint on the final SOC value is introduced. This constraint allows the comparison of many solutions by guaranteeing that they reach the same level of battery energy at the end of the driving cycle [START_REF] Guzzella | Vehicle propulsion systems[END_REF][START_REF] Sciarretta | Optimal control of parallel hybrid electric vehicles[END_REF]. This problem can be solved using optimal control tools [START_REF] Mensing | Ecodriving: an economic or ecologic driving style?[END_REF][START_REF] Petit | Optimal drive of electric vehicles using an inversion-based trajectory generation approach[END_REF]. The cost function to be minimized is the fuel consumption over a fixed time window of duration t f

J = t f 0 ṁf (ω eng (t), T eng (t))dt. ( 15 
)
The control variable u is composed of three components: the engine torque T eng , the electric machine torque T el and the gear-box ratio R gb

u(t) = [T eng (t), T el (t), R gb (t)]. ( 16 
)
This optimization is carried out under the following dynamical constraints

dx(t) dt = v(t), x(0) = 0, ( 17 
)
dv(t) dt = f (v(t), u(t)), v(0) = v 0 , (18) 
dξ(t) dt = g(v(t), ξ(t), u(t)), ξ(0) = ξ 0 , ( 19 
)
where x is the vehicle position and f is calculated by combining (1, 2, 12)

f = 1 m [-c 0 -c 1 • v -c 2 • v 2 + η gb r tire • R gb • R t • (T eng + R el • T el )]. (20) 
Since the vehicle speed, the battery state of charge, the engine torque and speed, the electric machine torque and speed and the gear-box ratio are limited, and the final position, final speed and the final value of ξ are fixed, the optimization must be performed under the following constraints

v(t) ∈ [0, v max (x)], (21) 
f (v, u) ∈ [a min , a max ], (22) 
ξ(t) ∈ [ξ min , ξ max ], (23) 
T eng (t) ∈ [T min (ω eng (t)), T max (ω eng (t))], (24) 
ω eng (t) ∈ [ω min , ω max ], (25) 
T el (t) ∈ [T elmin (ω el (t)), T elmax (ω el (t))], (26) 
ω el (t) ∈ [ω elmin , ω elmax ], (27) 
x(t f ) = D, (28) 
v(t f ) = v 1 , (29) 
ξ(t f ) = ξ t , (30) 
where D is the total traveled distance, ξ t is the desired final SOC, ξ min and ξ max are fixed values. The limitations T min , T max , T elmin and T elmax are given by look-up tables as a function of the engine speed ω eng and the electric machine speed ω el .

The speed limitations v max in ( 21) are given as a function of the vehicle position and not of time [START_REF] Mensing | Vehicle trajectory optimization for application in eco-driving[END_REF][START_REF] Dib | Optimal energy management for an electric vehicle in eco-driving applications[END_REF]. In this study, the considered initial and final values of the vehicle speed are zero

v 0 = v 1 = 0. ( 31 
)
Equation ( 22) limits the vehicle acceleration between its maximum and minimum values. The acceleration is an algebraic function of the vehicle speed and the control variables. This function can be evaluated for all the possible choices of the vehicle speed and the control variables. The values not satisfying the constraint on the acceleration are excluded.

The constraints on the engine torque in (24) and the electric machine torque in ( 26) are mixed input-state constraints, they depend on the vehicle speed v and the gear-box ratio. The constraints on the rotational speeds in ( 25) and ( 27) are mixed input-state constraints, they depend on the vehicle speed and the gear-box ratio.

For the battery, the current I b is limited between its maximum and minimum values in the case of battery charging and discharging. This constraint is not considered in the problem formulation. It will be checked a posteriori.

To summarize, the OCP considered in this paper is

(OCP ) : min u t f 0 ṁf (v, u)dt (32) 
under the dynamics (17,18,19), the state and input constraints (21,22,23,24,25,26,27), and the final constraints (28, 29, 30).

Speed limitations

To compute an eco-driving cycle from a given driving cycle, the following constraints [START_REF] Mensing | Ecodriving: an economic or ecologic driving style?[END_REF] have to be included:

• the same final distance x(t f ), the same number of stops and the same duration t f as the initial driving cycle,

• the vehicle speed limitations depending on the vehicle position x.

In this study, to specify the speed limits, a certain (fixed) margin e l on the initial driving cycle speed is considered

v max (x) =    v(x) + e l , v(x) > 0, 0, v(x) = 0, (33) 
where v(x) is the speed value of the initial cycle at the position x. Other types of limits can be considered as in (F. [START_REF] Mensing | Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving[END_REF][START_REF] Bouvier | Determination and comparison of optimal eco-driving cycles for hybrid electric vehicles[END_REF], where a set of legal speed limits v lim were used. The process of identifying the speed limit for a given position x can be described in two steps:

1. find index j for which v lim (j -1) + e l < v(x) and v lim (j) + e l ≥ v(x).

2. v max (x) = v lim (j).

The choice of speed limits does not impact the solving method. Then, the objective is to find a new speed trajectory that takes these constraints into account and leads to a lower fuel consumption.

Solving Methods

The solution considered here is based on Dynamic Programming (DP) [START_REF] Bertsekas | Dynamic programming and optimal control[END_REF]. It is well-known that the number of the state and the control variables greatly impacts the numerical methods. Considering additional state and control variables increases the level of complexity and the computational burden. It may also jeopardize the robustness of numerical methods employed to compute the optimal trajectories.

In order to reduce the computation time, the method suggested in (F. [START_REF] Mensing | Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving[END_REF][START_REF] Bouvier | Determination and comparison of optimal eco-driving cycles for hybrid electric vehicles[END_REF][START_REF] Monastyrsky | Rapid computation of optimal control for vehicles[END_REF]) is used, where the time-based OCP (with a fixed time step ∆t) is transformed into a space-based OCP (with a fixed distance step ∆x) using

d dt = v • d dx . ( 34 
)
In the space-based OCP, the stop phases are removed from the driving cycle.

A comparison between the time-based and the space-based OCP solutions for a conventional vehicle is given in [START_REF] Maamria | Which methodology is more appropriate to solve eco-driving optimal control problem for conventional vehicles[END_REF]. If the position space is discretized in N points with a fixed step ∆x, the time step ∆t(k), k = 1 : N is variable and is implicitly calculated from the vehicle speed v(k) and the vehicle acceleration a(k) by solving the second order equation

∆x = 1 2 a(k) • ∆t(k) 2 + v(k) • ∆t(k). (35) 
The x is omitted from the OCP (32). To calculate the right value of β, a rootfinding method can be used to drive the final time error to zero as done in [START_REF] Mensing | Vehicle trajectory optimization for application in eco-driving[END_REF][START_REF] Sciarretta | Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem[END_REF].

Based on this simplification, four methods to calculate eco-driving cycles for HEVs are defined in a complexity order as follows:

Method 1

In this method, the optimal control problem to be solved is the OCP described in (32) with the introduction of the tunable term β • ∆t(k) in the cost function as a terminal cost. The OCP has two state variables (v, ξ) and three control variables (T eng , T el , R gb ). The cost function to be minimized is

k=N k=1 [ ṁf (v(k), u(k)) + β] • ∆t(k) (36)
under the dynamics (18, 19), the state and input constraints (21,22,23,24,25,26,27), and the final constraints (29, 30). The parameter β controls the duration of the trip t f : it has been shown that the relations between β and t f is monotonic. This method is denoted by (M 1 ) and it is considered as a reference of comparison in this study.

Method 2

The dynamic of ξ has been considered in the OCP (32) because of the final constraint ( 30). Moreover, it has been shown, by using the Pontryagin Minimum Principle (PMP) [START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF], in the energy management system design for HEVs that neglecting the dependance of U ocv and R bat in ξ leads to a quasi-optimal fuel consumption [START_REF] Serrao | Optimal energy management of hybrid electric vehicles including battery aging[END_REF][START_REF] Sciarretta | Optimal control of parallel hybrid electric vehicles[END_REF][START_REF] Kim | Optimal control of hybrid electric vehicles based on pontryagins minimum principle[END_REF]. Thus, to reduce the number of state variables from 2 (v, ξ) to 1 (v), a new tunable quantity is added to the cost function (36) as follows

k=N k=1 ṁf (v(k), u(k)) + β + µ H lhv P ech (v(k), ξ, u(k)) • ∆t(k), ( 37 
)
where H lhv is the lower heating value of the fuel and ξ is a fixed value of ξ used to calculate mean (constant) values of R b and U ocv in the expression of the electrochemical power P ech defined in equation ( 11). The parameter µ is used to bring the final SOC to its target value ξ t : for a fixed value of β, the relation between the final SOC and µ is monotone. Because of the absence of information about ξ in the backward loop, the instantaneous constraint ( 23) cannot be handled. This method was suggested in (F. [START_REF] Mensing | Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving[END_REF][START_REF] Bouvier | Determination and comparison of optimal eco-driving cycles for hybrid electric vehicles[END_REF] and it is denoted, in what follows, by (M 2 ).

Method 3

The third method (M 3 ) is based on decoupling the optimization of the control variables. The method involves two steps:

1. Step1 : An eco-driving cycle is calculated assuming that the vehicle is propelled only by the ICE (vehicle parameters such as the weight and the road load coefficients do not change). The cost function to be minimized is the fuel consumption. The state variable is the vehicle speed v and the control variables are the engine torque T eng and the gear-box ratio R gb . The torque required at the wheel T wh is related to T eng and R gb by the relation ( 13). The associated OCP is min

(Teng,R gb ) k=N k=1 [ ṁf (ω eng (k), T eng (k)) + β] • ∆t(k) (38)
under the dynamics (18), the state and input constraints (21,22,24,25,26,27), and the final constraints (29). The tunable parameter β penalizes t f to obtain almost the same duration as the initial driving cycle. The expression of f in the dynamics of v, for this case, is

f = 1 m [-c 0 -c 1 • v -c 2 • v 2 + η gb r tire • R gb • R t • T eng ]. ( 39 
)
This problem was studied in (F. [START_REF] Mensing | Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving[END_REF][START_REF] Sciarretta | Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem[END_REF][START_REF] Maamria | Which methodology is more appropriate to solve eco-driving optimal control problem for conventional vehicles[END_REF][START_REF] Hooker | Optimal driving for single-vehicle fuel economy[END_REF][START_REF] Ozatay | Analytical solution to the minimum energy consumption based velocity profile optimization problem with variable road grade[END_REF][START_REF] Kamal | On board ecodriving system for varying road-traffic environments using model predictive control[END_REF].

2.

Step2 : Using the DP, an energy management strategy is calculated for the eco-driving cycle obtained in Step1. For this purpose, the vehicle is assumed to follow the eco-driving cycle (the torque at the wheel T wh is imposed). The objective is to determine the torque split between the electric machine and the ICE and the gear-box ratio in order to minimize the fuel consumption. The state variable is ξ with its final constraint (30). The control variables are the engine torque T eng and the gear-box ratio R gb . As the torque T wh is imposed, the electric machine torque T el is calculated from the torque balance in (12). On the other hand, the engine and the electric machine speeds are free as the gearbox ratio is considered as a control variable. They are calculated using formula ( 14) where only the vehicle speed v is known. The associated OCP can be written min

(Teng,R gb ) k=N k=1 ṁf (w eng (k), T eng (k)) • ∆t(k) (40) 
under the dynamics (19), state and input constraints (23,24,25,26,27), and the final constraints (30). The final time t f is fixed (the duration of the eco-driving cycle in Step1). The PMP can not be used to solve the OCP (40) because the cost function is not convex with respect to the discrete control variable R gb [START_REF] Nesch | Convex optimization for the energy management of hybrid electric vehicles considering engine start and gearshift costs[END_REF].

Method 4

This last method (M 4 ) is also based on decoupling the optimization of the control variables into two steps:

1. Step1 : This step is the same as Step1 in Section 4.3. 20 2. Step2 : Using the DP, an energy management strategy is calculated for the eco-driving cycle obtained in Step1. This step is similar to Step 2 in Section 4.3 where the gear-box ratio is fixed [START_REF] Guzzella | Vehicle propulsion systems[END_REF][START_REF] Serrao | Optimal energy management of hybrid electric vehicles including battery aging[END_REF][START_REF] Sciarretta | Optimal control of parallel hybrid electric vehicles[END_REF][START_REF] Kim | Optimal control of hybrid electric vehicles based on pontryagins minimum principle[END_REF]. The control variable is the engine torque T eng . As the torque T wh is imposed, the electric machine torque T el is calculated from the torque balance in ( 12). On the other hand, the engine and the electric machine speeds are imposed as the gear-box ratio is fixed. They are calculated using formula ( 14) where the vehicle speed v and the gear-box ratio R gb are known. The associated OCP can be written min

Teng k=N k=1 ṁf (ω eng (k), T eng (k)) • ∆t(k) (41) 
under the dynamics (19), the state and input constraints (23,24,26), and the final constraints (30).

A similar approach was suggested in [START_REF] Sciarretta | Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem[END_REF][START_REF] Ngo | An optimal control-based algorithm for hybrid electric vehicle using preview route information[END_REF] where the second step was performed using the PMP [START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF]. Convex optimization can also be used for the second step [START_REF] Nesch | Convex optimization for the energy management of hybrid electric vehicles considering engine start and gearshift costs[END_REF].

The number of state and control variables and the parameters to be tuned for each method are summarized in Table 2. The objective of this study is to find a trade-off between the optimality of the solution (fuel consumption), the number of parameters to be tuned and the computation time of the DP(s). 

States variables Control variables

Tuning parameters for each cycle are given in Table 3. The stop phases are removed from the driving cycles. The optimization is performed only when the vehicle moves.

M 1 2(v, ξ) 3(T eng , T el , R gb ) 1 (β) M 2 1(v) 3(T eng , T el , R gb ) 2 (β, µ) M 3 1(v) + 1(ξ) 2(T eng , R gb )+2(T eng , R gb ) 1 (β) M 4 1(v) + 1(ξ) 2(T eng , R gb )+1(T eng ) 1 (β)

Numerical Results

Six

The impact of the discretization step size on the optimality is not investigated. The study [START_REF] Maamria | Which methodology is more appropriate to solve eco-driving optimal control problem for conventional vehicles[END_REF] For the SOC, a step of ∆ξ = 0.25% is used in the method (M 1 ) and of ) and (M 4 ). The initial value of the SOC is ξ(0) = 60%. The gear-box considered has 6 ratios.

The constraints on the battery current I b are not considered in the problem formulation but checked in the forward computation (a posteriori).

For this study, a computer equipped with an Intel Core i7 2.30 GHz with 128 GB of RAM was used. The solution given by the method (M 1 ) is considered as a reference of comparison. However, this method is the most expensive in terms of Random-Access Memory (RAM) use and it is limited to three driving cycles: ECE, LWLTC and MWLTC (RAM saturation).

Optimality and computation time

The four methods are compared in terms of fuel consumption (Table 4), state trajectories, final time t f and the desired final SOC for all the methods (Table 5), computation time for each iteration (Table 6) and the RAM use during the backward loop (Table 7).

In Table 4, the second and the third row (Init-conv and Init-HEV) give the From Table 5, the error on the final time for the tested methods is less than 0.7% with the same final SOC (ξ(t f )). From Table 4 given the fuel consumption, it can be said that: • Methods (M 2 ) and (M 1 ) are close in terms of fuel consumption: suboptimality less than 1% while computation time is divided by at least 85. This small difference is not surprising as the formulation of the method (M 2 ) is similar to a PMP transformation with a tunable parameter µ (for the EMS design using PMP, µ is the equivalence factor).

• The method (M 1 ) overloads the RAM, it uses at least 76GB. 

ECE EUDC NEDC LWLTC MWLTC WLTC M 4 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 M 3 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 2 M 2 ≤ 2 ≤ 2 ≤ 3 ≤ 2 ≤ 2 ≤ 3 M 1 76 - - 85 95 - 
• The sub-optimality induced by using (M 3 ) compared to (M 2 ) is less than 2% while the computation times are close for short-driving cycles (ECE, LWLTC, MWLTC) and (M 3 ) is faster otherwise.

• The induced sub-optimality by using (M 4 ) compared to (M 2 ) is less than 3.5% except for the ECE case (where the error is 5%) while the computation time is divided by at least 8. The advantage of methods (M 3 ) and (M 4 ) compared to (M 2 ) is that only one parameter (β)

has to be tuned. In the studies (F. [START_REF] Mensing | Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving[END_REF][START_REF] Monastyrsky | Rapid computation of optimal control for vehicles[END_REF]Maamria et al., 2016a), it was shown that, for conventional and electric vehicles, the relation between the final time t f and β is monotone: t f decreases when β increases.

• Fuel consumption reduction depends on the nature of the driving cycle.

The fuel saving can be partially correlated to the mean speed v of the initial driving cycle: it increases when v decreases. It is the lowest for the EUDC while it is the highest for the ECE and the LWLTC.

5.2. Tuning of µ and β for the method (M 2 )

For the method (M 2 ), two parameters have to be tuned, and thus at least two iterations are needed. Figures 6 and7 show the sensitivity of t f and the final SOC to β and µ for the LWLTC:

1. For a fixed value of β, the variation of t f is small while the relation between the final SOC and µ is monotone: increasing the value of µ increases the final value of the SOC.

2. For a fixed value of µ, the variation of final SOC is small while the relation between the final time and β is monotone: increasing the value of β decreases t f .

A similar analysis was conducted for other fixed values of β and µ and for the other driving cycles. These relations make the search for the good (M 3 ), the induced sub-optimality is reduced to 2% while the computation time is still reasonable.

Conclusion

The calculation of eco-driving cycles for HEVs was studied. Four methods to solve the associated OCP were compared in terms of fuel consumption saving, state trajectories, computation time and memory (RAM) use with the objective of finding a trade-off between complexity and optimality. The result is that, for the parallel HEV under consideration, the simplest method, based on decoupling the optimization of the control variables into two steps, among all possible choices is accurate enough to guarantee a near optimal fuel saving (a sub-optimality of 3%) while ensuring a reasonable computa-tion time. By considering the gear-box ratio as a degree of freedom in the energy management system optimization, the induced-sub-optimality is reduced to 1.5% while the computation time is multiplied by 10. The reference method (the most complicated) overloads the RAM (at least 70GB) and has an inconvenient computation time (compared to the simplest method). An intermediate method, based on reducing the number of state variable was also tested. Its drawback is the introduction of an additional tuning parameter.
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 1 Figure 1: Parallel mild-hybrid architecture

Figure 2 :

 2 Figure 2: Specific fuel consumption SFC (g/kWh) of the ICE as a function of engine rotational speed and engine torque. For confidentiality reasons, the data are normalized.

Figure 3 :

 3 Figure 3: Electric Machine Efficiency as a function of the electric machine rotational speed and torque. For confidentiality reasons, the data are normalized.

  impact the conclusion of the conducted analysis. The same battery model is used for what follows. The battery current I b is also limited by its minimum value in the case of charging operation and its maximum value in the case of discharging phases. The dynamics of ξ is given by

Figure 4 :

 4 Figure 4: Internal resistance R bat [mΩ]

  acceleration a(k) is calculated from the vehicle speed v(k) and the control variables u(k). The final constraint on the vehicle position (28) is fulfilled by construction (D = N • ∆x). An additional tunable term β • ∆t(k) is added to the cost function as a terminal cost: β penalizes the final time to obtain almost the same time duration as the initial driving cycle. The state variable

  normalized driving cycles are considered: ECE-15 (the urban driving cycle), EUDC (the Extra-urban driving cycle), NEDC (the New European driving cycle), WLTC (the Worldwide harmonized Light vehicles Test Cycle), the low (LWLTC) and medium (MWLTC) phases of the WLTC. The duration without stop phases, the total traveled distance, mean speed value v and e l

  addressed this question for conventional vehicles. Based on the results obtained, the step sizes for the vehicle speed, position and engine torque are chosen as follows: ∆v = 0.1m/s for the vehicle speed, ∆x = 10m for the distance in the case of ECE and LWLTC and ∆x = 20m for the other driving cycles. For the control inputs u, steps of 2N.m for the engine and the electric machine torques are used.
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 12 Figure 12: Summary: Methods comparison in terms of fuel consumption reduction [%],normalized computation time (with respect to (M 4 )) and the RAM use.

Table 1 :

 1 Vehicle model parameters

		Description	Value Unit
	m	Vehicle mass	1930	kg
	r tire	Wheel radius	0.34	m
	η gb	Gear-box efficiency	0.87	-
	R gb	Gearbox ratios	6	-
	R t	Differential ratio	3.53	-
	R el	Motor-to-wheel ratio	2.5	-
	ω idle	Engine idle speed	750	rpm
	ω min	min engine speed	750	rpm
	ω max	max engine speed	4000 rpm
	ω elmax max electric machine speed 10000 rpm
	ξ min	SOC min value	20	%
	ξ max	SOC max value	90	%
	a min	Acceleration min value	-2	m/s 2
	a max	Acceleration max value	1.5	m/s 2
	3.1. Optimal Control Problem (OCP) formulation		

Table 2 :

 2 Difference between tested methods: state, control variables and tuning parameters.

Table 3 :

 3 Driving cycle parameters

	Cycle Name Time [s] Distance [km] e l [km/h] v [km/h]
	ECE-15	135	1.01	2	26.6
	EUDC	360	6.9	4	69
	MWLTC	386	5	3	46
	LWLTC	445	2.98	1	24.1
	NEDC	900	10.95	3	43.8
	WLTC	1574	22.72	3	52
	∆ξ = 0.02% in the second step of the methods (M 3	

Table 4 :

 4 Fuel consumption [g] 

		ECE EUDC NEDC LWLTC MWLTC WLTC
	Init-conv 50.6 299.5	501.7	123.2	206.7	973.3
	Init-HEV 33.2 283.8	414.8	91.1	178.4	829.3
	(M 4 )	21.6 229.3	317.3	69.1	122.5	665
	(M 3 )	20.7	227	310.9	67.4	120.8	655.9
	(M 2 )	20.5 226.6	310.3	66	118.3	649.1
	(M 1 )	20.3	-	-	65.9	118.2	-

fuel consumption for the initial driving cycles in the cases of a conventional and a hybrid vehicles (torque split only), respectively. They are used to assess the fuel saving of eco-driving for the considered methods.

Table 5 :

 5 Final time [s] and the desired final SOC [%]

	t f	ECE EUDC NEDC LWLTC MWLTC WLTC
	M 4	134.9 360.8	900.3	434.4	385.1	1575.3
	M 3	134.9 360.8	900.3	434.4	385.1	1575.3
	M 2	134.3 360.2	900.3	434.4	385.8	1575.2
	M 1	134.7	-	-	434.4	385.7	-
	ξ(t f )	60	60.21	60.39	60	59.97	60.21

Table 6 :

 6 Computation Time [s] for each iteration

		ECE EUDC NEDC LWLTC MWLTC WLTC
	M 4	6	29.7	47.8	17.3	17	104.6
	M 3 63.6 228.1	415	171	159.1	707.5
	M 2	50	368	596	144.5	171.4	1332
	M 1 4300	-	-	11000	14600	-

Table 7 :

 7 RAM use during backward loop[GB] 

SOC(t f ) [%]

Variation of µ for a fixed β Variation of β for a fixed µ values of β and µ easier. First, one can tune β to get a final time t f near its target value. After, µ is tuned to bring the final SOC to its desired value.

The values of β and µ are adjusted iteratively.

State and control variables trajectories

The speed and SOC trajectories versus the distance for the LWLTC cycle are shown in Figures 8 and9. 

Summary of the study

The main objective of this study is to calculate, within a reasonable time, an eco-driving cycle for HEVs. The comparison of the tested methods in terms of fuel consumption reduction (with respect to fuel consumption of conventional vehicles), the normalized computation time (with respect to the computation time of the method (M 4 )) and the RAM use is given in Figure 12. Based on these results, the methods (M 4 ) and (M 3 ) are the most suitable: the method (M 4 ) gives a first good estimation of the fuel saving with a reasonable computation time. By considering the gear-box optimization in