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Abstract The hybrid rhythmic ball-bouncing task conside-
red in this study requires a participant to hit a ball in a virtual
environment by moving a paddle in the real environment.
It allows for investigation of the on-line visual control of
action in humans. Changes in gravity acceleration in the
virtual environment affect the ball dynamics and modify the
ball-paddle system limit cycle. These changes are shown to be
accurately reproduced through simulation by a model integra-
ting continuous information-movement couplings between
the ball trajectory and the paddle trajectory, giving rise to a
resonance tuning phenomenon. On the contrary, the tested
models integrating only intermittent sensorimotor couplings
were unable to replicate the observed human behavior. Results
suggest that the visual control of action is achieved on-line,
in a prospective way. Human rhythmic motor control would
benefit from the timing and phase control emerging from the
low-level continuous coupling between the central pattern
generator and the visual perception of the ball trajectory. This
control strategy, which precludes the need for internal clock
and explicit environmental representation, is also able to
explain the empirical result that the bounces tend to converge
toward a passive stability regime during human ball bouncing.
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1 Introduction

Humans have the capacity to synchronize limb movement
with rhythmic visual stimuli. This capacity has been demon-
strated for tasks such as rhythmic finger tapping and limb
oscillation synchronized with a ball bouncing or flashing
lights (Gan et al 2015; Iversen et al 2015). Electrophysiology-
based studies have shown that some rhythmic movements
are the result of rhythm generators, known as Central Pattern
Generators (CPG). CPG dynamics are modulated by sensory
signals through low-level information-movement couplings
(Pearson 2004) and descending signals from the cerebrum
(Grillner 2006; Harris-Warrick 2011; Rossignol et al 2006).
A topical issue is to determine if the information-movement
couplings involved in the timing control of rhythmic tasks are
intermittent or continuous (Van Der Steen and Keller 2013;
Torre and Balasubramaniam 2009).

Among on-line visual control approaches, the information
processing hypothesis considers that during limb synchro-
nization with external periodic signals, movement characte-
ristics such as period or phase are corrected once per cycle,
through sequential relations called intermittent couplings
(Van Der Steen and Keller 2013). Most of the models of
human behavior during rhythmic impact tasks such as finger
tapping (see Repp (2005) for a review) and bouncing (de Rugy
et al 2003), consider intermittent couplings between the agent
and the environment. These discrete-time couplings, which
generally take the form of intermittent parametric control
laws, certainly play a role in the achievement of rhythmic
tasks (Siegler et al 2013; Warren 2006). They have recently
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been used to model the paddle period adaptation during ball
bouncing in Avrin et al (2016, 2017a); de Rugy et al (2003).

However, these intermittent couplings might be com-
plemented by emergent dynamics arising from continuous
interactions between the CPG and other oscillators from the
Neuro-Musculo-Skeletal system (NMS) or from the environ-
ment when sensory information is continuously available.
These continuous couplings have been called global entrain-
ments or continuous state control in the literature (Taga 1995;
Warren 2006). They give rise to entrainment and resonance-
tuning phenomena observed during the rhythmic visuomotor
tasks performed by humans. Interestingly, the phase- and
frequency-locking phenomena resulting from the resonance-
tuning phenomenon lead the coupled oscillators to converge
toward the resonant frequency of the closed-loop system, thus
leading to energy-efficient and stable movements (Williamson
1998; Goldfield et al 1993; Rabinovich et al 2006; Russell and
Sternad 2001). Resonant-tuning phenomena have particularly
been evidenced for couplings involving proprioception during
free limb oscillation tasks (Hatsopoulos and Warren Jr 1996;
Goldfield et al 1993; Williamson 1998). Resonance tuning
and entrainment phenomena were also observed during visu-
omotor tasks such as locomotion (Pelah et al 2015), postural
sway (Bertenthal et al 1997; Dijkstra et al 1994b,a), synchro-
nization of the human arm oscillation with an oscillating
external event (Buekers et al 2000; Lopresti-Goodman et al
2008; Schmidt et al 2007; Varlet et al 2014, 2012; Washburn
et al 2014; Gan et al 2015; Hove et al 2013; Iversen et al
2015), interpersonal visual coordination of limb oscillations
(Oullier et al 2008; Schmidt et al 1998; Schmidt and Turvey
1994; Schmidt et al 1990) and during visuomotor tracking
of a sinusoidally moving target (Russell and Sternad 2001;
Wimmers et al 1992).

During a one-dimensional (vertical) ball-bouncing task,
a participant hits a ball with a paddle to achieve a specific
target height (see Fig. 1). This task, which needs precise
sensorimotor synchronization to adapt the paddle period to
the ball period at each cycle, has often been used to investigate
the information-movement couplings involved in the human
control of rhythmic hybrid tasks (Ankarali et al 2014; Avrin
et al 2017b; Bazile et al 2013, 2016; Marchal-Crespo et al
2015; Morice et al 2007; Ronsse et al 2010; Ronsse and
Sternad 2010; Schaal et al 1996; Siegler et al 2010, 2013;
Sternad et al 2001; Wei et al 2007, 2008). These couplings
have efficiently been modeled by both intermittent and con-
tinuous couplings. However, no study has ever clarified the
interest of relying on one kind of coupling over the other.

Considering models implementing intermittent couplings,
de Rugy et al (2003) proposed a control architecture relying
on a Matsuoka oscillator generating almost sinusoidal paddle
trajectorieswith an oscillator frequency adapted intermittently
to control the paddle period. An extension of this controller
integrating a paddle amplitude adaptation law was proposed

in Avrin et al (2016) for torque control and Avrin et al (2017a)
for position control. These three models adapted the paddle
period directly after impact to equal the predicted ball period
based on the perception of the ball velocity after impact.
If one of these models were strictly implemented by the
nervous system to control the task, then humans would need
to have an internal model of the gravity acceleration and of the
mathematical relation between the post-impact velocity of the
ball and the ball period to predict ball flight duration just after
impact and ball launch. The hypothesis that humans predict
the ball period based on an explicit internal representation of
the gravity acceleration and use this information to achieve
the task by relying on once-per-cycle intermittent coupling is
tested in this study. In Avrin et al (2017b), the possibility that
the paddle period was adapted only when the ball reaches
its apex was investigated. In that case, the agent may deduce
the ball period as the double of the half-period between
impact and ball apex. This strategy would thus preclude
the need for prediction and internal representation of the
gravity acceleration. It was shown in this previous study that
under this control strategy, the bounce was unstable, thus
discrediting this hypothesis.

Instead of relying on internal models, it is possible that
human control strategies rely on resonance phenomena re-
sulting from continuous couplings between the NMS and
the environment. This solution was implemented in Avrin
et al (2017b) to synchronize the paddle trajectory with the
ball trajectory. It demonstrated an accurate matching with the
humans’ bounce error series for trials including perturbations
on the environmental conditions determined by the gravity
acceleration and the ball-paddle restitution coefficient. As a
consequence, concerning the paddle period adaptation law,
two competing hypotheses exist. The first one is the intermit-
tent parametric control of the paddle period, directly after
impact, which assumes knowledge about ballistic flight and
gravity acceleration. The second one is the state control of
the paddle period relying on the continuous coupling between
the ball trajectory and the paddle trajectory, giving rise to a
resonance-tuning phenomenon.

Furthermore, it has been shown that during ball bouncing,
human behavior is articulated around a passive stability re-
gime evidenced by the stability analysis of the task dynamics
(Schaal et al 1996; Sternad et al 2001; Tufillaro et al 1986).
Indeed, if the paddle hits the ball in a specific portion of
the paddle cycle, then small perturbations die out without
requiring any active control of the paddle trajectory. The ball
returns to its pre-perturbation limit cycle after a few transient
cycles because of the passive dynamics of the task. This
passive stability regime corresponds to a specific interval of
paddle acceleration at impact, which depends on the ball-
paddle restitution coefficient and on the gravity acceleration.
Humans were also shown to actively control the paddle tra-
jectory based on sensory information, resulting in bounces
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staying or going back to this passive stability regime (de Rugy
et al 2003; Morice et al 2007; Siegler et al 2010; Wei et al
2007). The nature of the information-movement couplings
involved in this convergence process remains undetermined.
An active control of the paddle acceleration at impact (or
impact phase) could be responsible for convergence toward
a limit cycle inside the passive stability regime. An alter-
native hypothesis is that the limit cycle emerges from the
continuous interaction between the NMS and the ball. The
self-organization of the coupled ball-paddle system would
give rise to phase-locking and frequency-locking phenomena.
The convergence toward a preferential paddle acceleration at
impact would be the result of this resonance tuning.

The objective of the present paper is to identify the
control principles and information-movement couplings in-
volved in the stabilization of the human ball-bouncing task.
More specifically, the first objective is to determine whether
these couplings are only intermittent (parametric control) or
whether considering continuous couplings (state control) is
necessary to explain the observed adaptation of the paddle
period to the ball period. The second objective is to determine
if an active control of paddle acceleration at impact, through
intermittent couplings, is responsible for the observed con-
vergence toward the passive stability regime during human
ball-bouncing trials.

These different coupling hypotheses are translated into
testable models of human ball bouncing. The candidate mo-
dels differ from each other by the information-movement
couplings involved in the control of the paddle period and
acceleration at impact. After presenting arguments discredi-
ting the first hypothesis, involving an intermittent control of
the paddle period but neither active nor emergent control of
the paddle acceleration at impact (HYP1), with regards to past
experimental results, the paper tests three other hypotheses.
The second hypothesis (HYP2) is that both the paddle period
and acceleration at impact are intermittently controlled and
that the active control of the paddle acceleration at impact is
responsible for the convergence toward the passive stability
regime. The third hypothesis (HYP3) is that a continuous
coupling between the perceived ball trajectory and the NMS
is responsible for the adaptation of the paddle period to the
ball period. The paddle acceleration at impact is not actively
controlled but the convergence toward a specific limit cycle
emerges from the continuously coupled ball-NMS system dy-
namics. The last hypothesis (HYP4) is a compromise between
the two previous hypotheses: in addition to the continuous
coupling between the ball and the NMS, an intermittent cou-
pling controls the paddle acceleration at impact. Therefore,
the convergence of the paddle acceleration at impact toward
a specific limit cycle results from both active and emergent
control.

It is known that gravity affects the human NMS bio-
logically and physically, which in return changes our gait

or limb synchronization, as analyzed for walking, running
and jumping for expected and unexpected changes in gravity
(Dietz and Duysens 2000; Sylos-Labini et al 2013; White et al
2008). Manipulating gravity during rhythmic motor tasks in
interaction with the environment allows for a better understan-
ding of the existing interactions between the central nervous
system, the musculoskeletal system, and the environment.
More generally, it is useful to shed light on the processes
involved in the generation of muscular activity patterns and
sensory feedback modulation. The human capacity to tune the
steady-state bouncing inside the passive stability regime and
the influence of gravity on this limit cycle will be the main
elements used to discriminate between the intermittent or
continuous coupling hypotheses. This paper proposes to use
gravity manipulation to confront the competing hypotheses
and to explain the convergence of the bounces toward the
passive stability regime.

To summarize, the objective of this paper is to discri-
minate information-movement coupling models that have
been mentioned in the literature about the ball-bouncing task,
by implementing these hypotheses into testable models and
by comparing their predictions with the experimental data.
This confrontation should lead to a deeper understanding of
the brain-body-environment interactions as well as open up
avenues for the design of bioinspired robot control algorithms.
Section 2 presents the candidate CPG-based control architec-
tures and the discrimination method. Section 3 presents the
results of comparisons between the model and the experimen-
tal data and Section 4 discusses these results. Conclusions
are drawn in Section 5.

2 Methods

2.1 Candidate models of human ball bouncing

The ball-paddle impact law, the CPG model, the arm me-
chanical system and the amplitude adaptation law presented
below are shared by the candidate models.

2.1.1 The bouncing ball model

During the ball-bouncing task, the participant oscillates
his/her forearm (rotation at the elbow) to bounce a ball
vertically so that the ball apex reaches a predefined target
height hp at each cycle. The article uses the following no-
tations (Fig. 1): θ is the angle between the horizontal axis
and the forearm, Tb(k) is the ball period during cycle k, i.e.
between impact k and impact k + 1. Tr (k), ACr and ε(k) are
the paddle period, the paddle acceleration at impact and the
bounce error of cycle k, respectively. The bounce error is
defined by the distance between the ball apex ha(k) and the
target height hp , i.e. ε(k) = ha(k) − hp .



4 Guillaume Avrin et al.

The ball flight between impacts is governed by ballistic
equations:

Xb(t) = Xb(k) + Vb(k)t − 0.5gt2

Vb(t) = Vb(k) − gt

}
for tk < t < tk+1, (1)

in which g denotes the gravity acceleration, Xb(t) the ball
position, tk the k-th impact instant, Xb(k) the k-th impact
position and Vb(k) the ball velocity directly after impact k.
The impact equation is:

Vb(k) = −αVb(k)− + (1 + α)Vr (k), (2)

in which α is the ball-paddle restitution coefficient at impact,
Vr (k) the paddle velocity at impact and Vb(k)− the ball
velocity directly before impact k.

4

Fig. 1: Model of the human control architecture during ball
bouncing (see Section 2.1.1 for legends).

2.1.2 The neuromechanical model

The neuromechanical model (CPG and arm) shared by the
various models tested in this study is similar to the model
presented in Avrin et al (2017b). AMatsuoka neural oscillator
acts as a CPG and activates the arm flexor and extensor
muscles to generate oscillating torque at the elbow (Matsuoka
1985, 2011). This oscillator constitutes a parsimonious half-
center structure generating movements, with profiles encoded
on the CPG attractor dynamics, that can be scaled based on
information from the target (i.e. bounce error). This CPG
model has already been attested to model rhythmic movement
generation during different tasks including ball bouncing
(de Rugy et al 2003; Taga 1995; Zhang et al 2009). The two
neurons in reciprocal inhibition of the Matsuoka oscillator
are defined by nonlinear differential equations:

τr Ûx1 = −x1 − βv1 − ρy2 − h0[m]+ + u,
τa Ûv1 = −v1 + y1,

τr Ûx2 = −x2 − βv2 − ρy1 − h0[m]− + u,
τa Ûv2 = −v2 + y2,

(3)

in which xi(t) and vi(t) are the i-th neuronmembrane potential
and the self-inhibition responsible for the fatigue phenomenon,
respectively. The coupling between neurons is ensured by
the terms yi(t) = max(xi(t), 0). CPG output is yout (t) =
max(x1(t), 0) − max(x2(t), 0) and m(t) is CPG sensory input
with [m(t)]+ = max(m(t), 0), [m(t)]− = max(−m(t), 0). ρ
is the mutual-inhibition intensity and β the self-inhibition
intensity. u is the excitability determining oscillator output
amplitude and h0 is a constant gain on the input m(t). τr and
τa are the time constants determining the responsiveness of
xi and vi , respectively.

The Matsuoka oscillator has two operating modes. In the
first mode, the oscillator autonomously produces a periodic
limit cycle with a natural pulsation denoted ωn in the absence
of rhythmic sensory input (m = 0). In the second mode, the
oscillator can be entrained by an external signal or dynamic
system to which it is coupled by the input m in a robust and
stable way.

Concerning the forearm mechanical impedance, it is a
simplified model, linearized around the resting position θ = 0,
with constant coefficients:

I Üθ + γ Ûθ + Kθ = h1ζ, (4)

in which ζ denotes the elbow torque, I the arm inertia, γ
the damping ratio, K the arm stiffness and h1 a constant
multiplicative gain on the torque input. The parameter values
are taken equal to the values used in Avrin et al (2017b):
K = 25 kg · m2 · s−2, γ = 1.8 kg · m2 · s−1, I = 0.1 kg · m2.

2.1.3 The paddle amplitude and period control

Siegler et al (2013) revealed that the control of the paddle
trajectory by participants is achieved visually, on a cycle-
by-cycle basis. During each cycle, the period of the paddle
oscillation Tr is modulated to match the period of the ball Tb

and the paddle velocity from previous impact is adapted pro-
portionally to the bounce error ε. The equations summarizing
these results are:

Tr (k + 1) = Tb(k + 1),
∆Vr (k + 1) =̂ Vr (k + 1) − Vr (k) = Λvelε(k),

(5)

in which Λvel is a negative constant and Vr (k) the paddle
velocity at impact k. In the virtual environment, the paddle
trajectory is unaffected by the impact with the ball. As a
consequence, the paddle velocity just before impact is equal
to the paddle velocity just after impact. The different hypot-
heses concerning the control paradigms giving rise to these
information-movement couplings are presented below.

Error-to-target correction law derived from past experimental
results The error-to-target related information-movement
coupling of Equations 5 is implemented via an adaptation of
the joint torque magnitude at the elbow (i.e. the magnitude
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of the oscillator output), which is determined by the neural
oscillator excitability u. Once per cycle, when the bounce
error is perceived (i.e. when the ball reaches its apex), u is
adapted according to the relation u(k + 1) = λε(k) + u(k).
This error-to-target correction law is common to all versions
of the model proposed in this paper.

Control of the ball-paddle impact timing Different opera-
ting modes are considered for the Matsuoka oscillator to
achieve the ball-paddle impact timing control. First, the
Autonomous-Oscillation mode (AO) is considered (see de-
tails about the autonomous Matsuoka oscillator tuning in
Avrin et al (2016)). The information-movement coupling
responsible for the paddle period adaptation, presented in
Equations 5, is implemented in this operating mode via an
adaptation of the oscillator natural frequency. As demonstra-
ted in Avrin et al (2016, 2017b), this operating mode is robust
only if the oscillator natural frequency is adapted directly
after impact. This post-impact adaptation requires the ball
period to be predicted based on the perception of the ball’s
post-impact velocity and the internal quantitative knowledge
of the gravity acceleration value, as hypothesized in de Rugy
et al (2003). This adaptation is achieved by a modification of
the oscillator time constants τr and τa as explained in Avrin
et al (2016) and recalled in Equations 6. This mode is used in
HYP1 and HYP2.

The alternative operative mode is the Forced-Oscillation
mode (FO), where the oscillator is coupled to the perception
of the ball trajectory (for instance the ball position or velocity).
The paddle period adaptation would thus result from the oscil-
lator entrainment by this informational input. However, this
mode is only efficient when the oscillator natural frequency
ωn is close to the ball frequency 2π/Tb as explained in Avrin
et al (2017b). As a consequence, the FOmode is completed by
an adaptation of the oscillator natural frequency to equal the
ball frequency at each cycle. The oscillator natural frequency
adaptation is achieved when, or after, the ball reaches its apex.
This FO mode with oscillator natural frequency adaptation is
referred to as Mixed-Oscillation mode (MO). This mode is
used in HYP3 and HYP4.

For the MO mode implemented in this paper, the continu-
ous oscillator input m is equal to the perceived ball velocity
delayed by a duration td: m(t) = Vb(t − td). td will be referred
to as visual time delay in this paper. This delay affects the
ball-paddle impact phase as presented in Avrin et al (2017b).
To summarize, the oscillator dynamics are modulated by
sensory information via Equations 6.

u(k + 1) = λε(k) + u(k)
τr = c1Tb(k), τa = c2Tb(k)

}
(AO),

m(t) = Vb(t − td)

 (MO), (6)

in which c1 and c2 are two constants parameters chosen so
that the natural frequency of the oscillator is equal to 2π/Tb .
The tuning method is presented in Avrin et al (2016).

2.1.4 Active control of the paddle acceleration at impact

The AO and MO modes can be completed by an additional
information-movement coupling responsible for the control
of the paddle acceleration at impact (as in HYP2 and HYP4).
The real and desired paddle acceleration at impact are noted
ACr and AC∗r . For the AO mode, the paddle acceleration
at impact can be controlled through a modification of the
paddle period adaptation law. Indeed, if Tr is adapted to be
lower than Tb for one cycle, then the bounce will occur later
in the paddle cycle and the paddle acceleration at impact
will be decreased. Inversely, if Tr increases to be higher than
Tb, the paddle acceleration at impact will be increased. The
period-related equality in Equation 5 becomes:

Tr = Tb + υ1(ACr − AC∗r ). (7)

For the MO mode, this adaptation law cannot be used as
the paddle period is determined by the low-level coupling
with the ball trajectory, and not by its natural frequency. The
paddle acceleration at impact is thus controlled through an
adaptation of the visual delay parameter td that determines
the phase shift between the ball trajectory and the paddle
trajectory:

td(k + 1) = td(k) + υ2(ACr − AC∗r ). (8)

For the simulations implemented in this study, the visual
input delay td of the MOmode has to take values proportional
to the sampling period of the simulator (tsamp = 0.003 s). As
a consequence, the active control of the paddle acceleration
at impact in the MO mode is expressed as:

td(k + 1) = td(k) + f loor(υ2(ACr − AC∗r ))tsamp . (9)

The floor function is the function that takes as input a
real number x and gives as output the greatest integer that
is less than or equal to x. It acts as a threshold in Equation
9. Indeed, a small υ2 value would lead to a large interval
of ACr for which the control of the paddle acceleration at
impact is nonactive, whereas a large value would result in an
almost always active control. It is thus possible to tune υ2 to
match the participants’ bounce error or paddle acceleration at
impact series during ball bouncing trials. The tuning method
is presented in Section 2.3.

2.1.5 Emergent control of the paddle acceleration at impact

For robotic applications, Williamson (1999); Arsenio (2000)
suggested using the phenomenon of frequency locking occur-
ring when the Matsuoka oscillator is coupled with a sinus
signal with a frequency and amplitude equal to those of the
ball. They demonstrated that the limit cycle to which the
bounce converges is independent of the trial initial conditi-
ons and can be predicted based on a Describing Function
Analysis (DFA) of the closed-loop system. In Avrin et al
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(2017a), the authors demonstrated that this frequency-locking
phenomenon could also be produced by directly feeding the
neural oscillator with the non-sinusoidal ball trajectory (as
is the case for HYP3). The independence of the limit cycle
from the initial conditions remains as shown in Fig. 2 for
various initial ball positions X0. On the contrary, the model
implementing HYP1 defines a continuum of limit cycles, as
demonstrated in Avrin et al (2017a), and the convergence
toward a specific limit cycle depends on the initial conditions
of the ball-bouncing trial, as illustrated in Fig. 2.

In addition, using the method proposed in Williamson
(1999) and the describing functions of the ball bouncing
task given in Matsuoka (2013), the influence of gravity
acceleration on the bounce limit cycle generated by the model
implementing HYP3 can be evidenced. Fig. 3 compares the
predicted and simulated steady-state ball-paddle phase shift
and paddle frequency as a function of g. The prediction of the
steady-state paddle frequency is very accurate whereas a small
discrepancy remains between the predicted and simulated
ball-paddle phase shift (15% error).

Fig. 2: Influence of the initial ball position X0 on the steady-
state paddle acceleration at impact, for the models imple-
menting HYP1 and HYP3.

2.2 Models discrimination method

2.2.1 Experimental data used for hypotheses testing

The models corresponding to the different hypotheses tested
in this study are summarized in Fig. 4. To discriminate
between these models, this paper analyzes the influence of
gravity on the ball-bouncing limit cycle (quantified by the
impact phase, position and paddle acceleration) predicted by
the different models and observed during the participants’
experimental trials. Two types of gravity-related conditions
tested in previous experimental papers are used for models

Fig. 3: Comparison of the predicted and simulated steady-
state. a: ball-paddle phase shift and b: paddle frequency, as a
function of g, for the model implementing HYP3.

tuning and discrimination: i) gravity acceleration is changed
permanently during on-going trials and ii) it is changed for a
one ball cycle during on-going trials and then reset to its pre-
perturbation value. The previous experiments implementing
these conditions are described below.

First, during Experiment 2 of Siegler et al (2010), g was
suddenly changed during ongoing bouncing and the target
height hp was constant and equal to 0.55 m. 8 transitions on g
were tested. The experiment was completed by 13 participants,
each participant performing 12 trials with three perturbations
on g separated by 12 or 16 seconds. g was changed as the
ball reached its apex. This experiment will be referred to as
the "g-transition experiment" in this manuscript.

Secondly, to investigate the human bounce error cor-
rection strategy after a perturbation, Experiment 2 of Siegler
et al (2013) introduced occasional perturbations on g and
on the ball launch velocity Vb during 40 s-long trials with a
constant target height hp equal to 0.65 m and environmental
conditions before perturbation g = 9.81 m.s−2 and α = 0.42.
During these trials, the perturbation magnitude x was selected
randomly inside the interval [−0.25, 0.25] so that, for one
full cycle, the ball velocity after impact and the gravity were
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varied to be equal to Vb(k)(1 + x) and g(1 + x), respectively.
As a result, the perturbed ball apex h

′

a of the perturbed cycle
varied within ±25% of its original value and the ball period
was kept constant. The group of 16 participants was submitted
to a total of 4502 perturbations. For results analysis, these
perturbations were uniformly binned into ten perturbation
magnitude categories (Mag-5, Mag-4, ..., Mag5). This ex-
periment will be referred to as the "g-occasional-perturbation
experiment" in this manuscript.

Here we assume that humans do not dispose of a learned
look-up table where each value of g corresponds to a specific
acceleration at impact to be reached. This assumption is
supported by the fact that humans are not used to performing
rhythmic impact tasks in a variable gravity environment,
which would have allowed for the creation of such a table.
In addition, during experiments carried out by Siegler et al
(2010, 2013) the trials were proposed in a random order to
participants, thus avoiding any learning or anticipation effect.
Based on the experimental results, Siegler et al (2010) also
concluded that humans are very unlikely to use an estimated
value of the perturbed gravity acceleration to control the
paddle movement during on-going ball bouncing. As a con-
sequence, this study does not consider any model integrating
such a table.

2.2.2 Prediction of the different models

As the paddle acceleration at impact is assumed to be actively
controlled in HYP2 and HYP4 to converge toward a specific
value, these hypotheses predict that a participant’s paddle
acceleration at impact will go back to its pre-perturbation
value after permanent changes on the gravity during the
g-transition experiment.

Concerning the ball bouncing task controlled by the
model implementing HYP3, the steady-state frequency and
phase at impact are shown in Fig. 3 to depend on the gravity
value. Thus, the paddle acceleration at impact, which directly
depends on the paddle frequency and impact phase for the
quasi-sinusoidal paddle movement, also depends on g. As
a consequence, according to this hypothesis, a transition
between the pre-perturbation paddle acceleration at impact
and the post-perturbation one is predicted to occur when
looking at the human data from the g-transition experiment.
On the contrary, after the perturbations occurring in the g-
occasional-perturbation experiment, HYP2, 3 and 4 predict
that the post-perturbation paddle acceleration value will be
equal to the pre-perturbation value.

HYP1, which considers that the paddle acceleration at
impact is not controlled, predicts that after both occasional
and permanent perturbation on g, the steady-state paddle acce-
leration at impact will be different from the pre-perturbation
value. Indeed, as shown in Fig. 2, convergence toward a
specific limit cycle depends on the initial conditions of the

ball-bouncing trial for HYP1. It is thus very sensitive to
perturbations, either occasional or permanent.

2.2.3 Statistical tests used for hypotheses testing

As presented in Section 2.2.2, the tested models predict
different influences of the occasional perturbation and per-
manent transition of g on the pre- and post-perturbation
paddle acceleration at impact. The prediction output is binary:
either the modification of g modifies the steady-state paddle
acceleration at impact, or not. Similarly, for the participants’
experimental trials, the pre- and post-perturbation steady-state
paddle acceleration at impact will be compared by means
of a paired sample t-test. This statistical test will make it
possible to evidence whether or not the modification of g
significantly modifies the human ball bouncing limit cycle.
By comparing model predictions to t-test results, it will be
possible to identify which model reproduces the influence of
g on the steady-state paddle acceleration at impact.

For g-transition experiments, the paired sample t-tests will
compare the mean of the 13 participants’ means of the first 8
points of the 32 paddle acceleration series to the mean of the
13 participants’ means of the last 8 points (N=13, p<0.05).
During g-occasional-perturbation experimental trials, the
perturbations were approximately separated by only 8 cycles.
As a consequence, the paired sample t-tests will compare
the mean of the 16 participants’ first point of the 8 paddle
acceleration series to the mean of the 16 participants’ last
point (N=16, p<0.05).

2.3 Tuning of the tested models

The g-transition experiment and the g-occasional-perturbation
experiment were performed by two different groups of parti-
cipants. The CPG parameters c1, c2, β, ρ are supposed to be
independent of the group of participants considered. They are
taken equal to the values already used in Avrin et al (2017b)
and listed in Table 1. On the contrary, the sensorimotor gains
(λ, h0, h1, td) are assumed to be influenced by participants’
expertise in ball bouncing. These parameters were optimized
in Avrin et al (2017b) to match the participants’ bounce error
time series of the g-transition experiment Siegler et al (2010).
They are thus taken equal to the values found in this previous
study. The same parameter setting method is used in this
study to match the participants’ bounce error time series of
g-occasional-perturbation experiment Siegler et al (2013).
In this tuning method, the parameters {td, h0, h1} are first
optimized by a Particle Swarm Optimization (PSO) (Yagoubi
and Sandou 2011) that minimizes the sum of the Normalized
Root Mean Square Error (NRMSE) between the steady state
time series of the participants and the model position, phase
and paddle acceleration at impact. It is important to note
that with this optimization, if the bouncing steady-state is
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Fig. 4: Models corresponding to the different hypotheses tested.

reached before perturbation, the cost function only evaluates
the goodness of the parameters {td , h0, h1}.

This cost function value is independent of parameters λ,
υ1 and υ2, which influence the bounce transient state and
therefore the response time after perturbations. Once the
parameters {td , h0, h1} were tuned, they were kept constant
and the value of λ minimizing the sum of the NRMSE bet-
ween the participants and model bounce errors for the eight
cycles around perturbation (2 cycles before perturbation and
6 cycles after perturbation) was chosen for tuning. In com-
parison with the model proposed in Avrin et al (2017b), this
paper also considers an intermittent control of the paddle
acceleration at impact through the adaptation parameters
υ1 and υ2. These parameters were optimized to match the
participants’ behavior observed during the g-transition ex-
periment and the g-occasional-perturbation experiment. The
sum of the NRMSE between the participants and model
bounce errors and paddle acceleration at impact for a definite
number of cycles around perturbation (32 and 8 cycles for
the g-transition experiment and g-occasional-perturbation
experiment, respectively) was calculated for different values
of υ1 or υ2, depending on the model considered. The υi value
leading to the minimum NRMSE was chosen for tuning. Note
that the cycles before perturbation will have no influence on
the NRMSE if the considered λ, υ1 and υ2 values allowed
the system to reach steady-state before perturbation. Their
optimized values are given in Table 1.

For models implementing HYP2 and HYP4, we suppose
that the target paddle acceleration at impact AC∗r has been
learned based on trials with the normal gravity acceleration
on Earth g = 9.81 m.s−2. This gravity condition is the most
recurrent in the human behavior experiments used for model
discrimination in this study. For this gravity acceleration, in
the g-transition experiment, the mean paddle acceleration at
impact was equal to −2.71 ± 1.83 m.s−2. AC∗r is therefore
considered equal to −2.71 m.s−2. This value is also close to
the maximally stable acceleration at impact (−3 m.s−2) found
with the Lyapunov stability analysis of Sternad et al (2001).

Table 1: Optimized values of the model parameters for the
g-transition experiment and g-occasional-perturbation expe-
riment considered in this study

g-transition experiment g-occasional-perturbation experiment

c1 = 0.137 c1 = 0.137
c2 = 0.314 c2 = 0.314
ρ = 1.689 ρ = 1.689
β = 2.512 β = 2.512
h0 = 96.54 h0 = 74.98
h1 = 0.610 h1 = 0.427
λ = −3.400 λ = −10.00
td = 36.00 ms (for HYP 3 and 4) td = 84.00 ms (for HYP 3 and 4)
υ1 = 0.004 (for HYP 2) υ1 = 0.005 (for HYP 2)
υ2 = 0.85 (for HYP 4) υ2 = 0.75 (for HYP 4)

3 Results

Table 2 indicates the p-values of the paired sample t-test
comparison between the pre-perturbation values and post-
perturbation values of the paddle acceleration, position and
phase at impact, with stars indicating significant differen-
ces (p < 0.05). In the case of occasional perturbations on
g, there is no significant difference between the pre- and
post-perturbation limit cycles (except for the perturbation
conditions Mag−4). Since these perturbations are occasional,
they can be seen as a change in the initial conditions of a
new trial, which depend on the perturbation magnitude. Thus,
these results show that the human limit-cycle is independent
of such initial conditions. As a consequence, HYP1, which
was shown to depend on initial conditions, is invalidated.
From these results, it is certain that the paddle acceleration
at impact is controlled, either actively or emergently. This
result is in agreement with HYP2, 3 and 4. Simulated time
series of the models implementing these three hypotheses
and facing the perturbation magnitudes Mag − 5 and Mag5
of the g-occasional-perturbation experiment, are compared
to the humans’ time series on the top row of Fig. 5 for illus-
trative purposes. The black solid lines and the shaded region
of Fig. 5 indicate the participants’ mean paddle accelera-
tion at impact series and standard deviation, respectively. As
expected, it can be seen that the post-perturbation paddle
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acceleration at impact of the three models converges toward
the pre-perturbation value.

Concerning the g-transition experiment, Table 2 indicates
that all but one perturbation magnitudes led to a significant
difference between the pre- and post-perturbation impact
phase. This result suggests that the impact phase was not
actively controlled to reach a specific predefined value. It is
the main reason why an active paddle acceleration control
was considered instead of active phase control in this study.
Moreover, among the perturbation conditions tested, 5 out
of 8 led to a significant difference between the pre- and
post-perturbation paddle acceleration at impact, and 4 out of
8 led to a significant difference between the pre- and post-
perturbation position at impact, thus making it very unlikely
that these variables are actively controlled by humans. These
results confirm that the bouncing limit cycle is influenced
by the value of the gravity acceleration. They support the
hypothesis that humans do not rely on an active paddle
acceleration (or phase, or position) control during the ball
bouncing task to converge toward a specific limit cycle inside
the passive stability regime (invalidating HYP2 and 4). On the
contrary, the mixed-oscillation model of HYP3 qualitatively
reproduced the influence of g on the steady-state paddle
acceleration at impact, without requiring an active control to
converge toward a specific steady state.

The paddle acceleration at impact series of the models
implementing HYP2, 3 and 4 are compared to the participants’
series for the permanent perturbation 13.69 → 9.81 and
9.81 → 13.69 of Experiment 2 of Siegler et al (2010) on
the bottom row of Fig. 5 for illustrative purposes. If each
model was able to cancel the bounce error after a permanent
perturbation on g, the model implementing HYP3, which
involves the MO mode without active control of the paddle
acceleration at impact, better matches the participants’ series.

4 Discussion

When a perceptual-motor task is weakly constrained by physi-
cal and biomechanical systems, the task is generally neutrally
stable, meaning that there is no unique fixed point determined
by the interaction between the NMS and the environment but,
on the contrary, an infinity of equilibrium points. The conver-
gence toward a specific limit cycle thus depends on the initial
conditions (Warren 2006). Concerning the ball-bouncing task,
it was shown in Avrin et al (2017a), and further demonstrated
in this study, that for the human neuromusculoskeletal model
considered and under intermittent control of the paddle ampli-
tude and period, the resulting ball-paddle system is neutrally
stable. However, during experimental ball-bouncing trials,
participants are shown to have preferred limit cycles, as they
tend to hit the ball inside the passive stability regime of the
ball-bouncing task, independently of the trial initial condi-
tions (Schaal et al 1996; Sternad et al 2001). Thus, human

Fig. 5: Comparison of the participants’ and model paddle
acceleration at impact series after perturbations on g. Figures
in the top row and bottom row corresponds to occasional
perturbations on g and permanent perturbation on g, respecti-
vely.

ball bouncing is not a neutrally stable task and it is likely that
a control strategy is responsible for the convergence toward
a specific limit cycle. As this strategy had not previously
been identified, this study investigated the different hypot-
heses concerning its nature. By testing previously proposed
models of human ball bouncing, implementing intermittent
information-movement couplings (Avrin et al 2016, 2017a;
de Rugy et al 2003) and continuous couplings (Avrin et al
2017b), the study makes a contribution to various related
ongoing debates about human motor control, as presented
below.

Behavioral dynamics rather than information processing
The present study intends to contribute to the debate oppo-
sing the information processing to the behavioral dynamics
approaches of the on-line visual control of rhythmic tasks, as
presented in the Introduction. Among the models tested in
this study, only the model implementing a continuous cou-
pling between the ball and the paddle trajectory, leading to an
emergent control of the bouncing limit cycle thanks to phase
and frequency locking phenomena, was able to reproduce the
observed human behavior. Specifically, it was the only one to
explain the influence of the gravity acceleration on the steady-
state impact phase, position and paddle acceleration. Thus,
these results support the continuous state control hypothesis
of the behavioral dynamics theory.

Prospective rather than predictive control An on-going de-
bate exists about the nature of information allowing humans
to intercept objects and the way this information is used by
the central nervous system. Two main theories compete with
each other. The predictive control approach suggests that the
brain is able to predict the trajectory of a flying object and
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Table 2: p-values of the paired sample Student t-test comparisons. Stars indicate significant differences (p < 0.05).

g-occasional-perturbation experiment (N=16)
Mag − 5 Mag − 4 Mag − 3 Mag − 2 Mag5 Mag4 Mag3 Mag2

ÜXr 0.56 0.04∗ 0.33 0.69 0.52 0.12 0.3 0.09
Xr 0.60 0.02∗ 0.18 0.74 0.77 0.59 0.40 0.13
φ 0.64 0.02∗ 0.34 0.77 0.31 0.53 0.89 0.36

g-transition experiment (N=13)
perturb. g 9.81→ 6.56 9.81→ 8.10 11.66→ 9.81 13.69→ 9.81 9.81→ 11.66 9.81→ 13.69 6.56→ 9.81 8.10→ 9.81
ÜXr 0.70 0.003∗ 0.15 < 10−3∗ 0.02∗ 0.01∗ 0.17 0.01∗
Xr 0.23 0.35 0.003∗ 0.009∗ 0.04∗ < 10−3∗ 0.45 0.06
φ 0.005∗ < 10−3∗ < 10−3∗ < 10−3∗ 0.001∗ < 10−3∗ 0.003∗ < 10−3∗

the appropriate interception position (velocity in the case of
hitting tasks) based on internal representations of this object
and the environment (Wolpert and Ghahramani 2000). On
the contrary, the prospective approach assumes that a conti-
nuous coupling exists between the agent and the object to be
intercepted. Several interception tasks studying the human
capacity to hit (Katsumata and Russell 2012; Lee et al 1983)
or catch a ball (Montagne et al 1999; Dessing et al 2005)
demonstrated that the human arm movement was guided
by the continuous perception of the ball, allowing for such
prospective control. Similarly, the ball-bouncing task can
be viewed as a rhythmic interception task. After comparing
different adaptation strategies, this paper suggests that the pad-
dle period is controlled on-line by the continuous low-level
coupling that exists between the ball velocity and the paddle
trajectory. The use of such continuous visual information to
drive the movement precludes the need for predictive control
and thus an internal model of the environment. The CPG
entrainment by an input signal takes the form of a reactive
control strategy in the sense that there is a tight coupling
between the sensory input and the effector output. However,
the derivative of a variable indicating the rate of change of
this variable, and the input signal being the ball velocity,
the CPG benefits from the advantages of both reactive and
prospective control strategies. This innovative modeling of
the human motor control of rhythmic movement led to results
that further support the prospective control hypothesis and
more generally the direct perception or ecological approach
(Gibson 1979).

The validity of the continuous coupling hypothesis is
further supported by the observation that after large perturba-
tions, participants do not wait for the ball to reach its apex to
adapt the paddle period to equal the ball period (Avrin et al
2017b). Contrary to what was assumed in previous modeling
studies relying on predictive control (Avrin et al 2017a, 2016;
Ronsse et al 2010; Ronsse and Sternad 2010; de Rugy et al
2003), this means that humans integrate information from the
environment more frequently than just once per cycle. The
human on-going movement adaptation during visuomotor
tasks was also underlined in Bootsma and Van Wieringen
(1990); Zhao and Warren (2015).

Furthermore, a predictive control strategy seems to be
less likely to be used by humans during the ball-bouncing
task. Indeed, in the g-transition experiment of Siegler et al
(2010), the bounce error after perturbations was shown to be
corrected most of the time over less than 4 cycles, which is a
very short time window for humans to update their internal
representation of the gravity acceleration based on the visual
perception of the perturbed ball acceleration. In addition, the
human vision system was shown to perform very poorly at
estimating object acceleration (Benguigui et al 2003; Lee
et al 1997; Ripoll and Latiri 1997).

Emergent rather than explicit internal (or event-based) ti-
ming This analysis evidenced the self-organization emerging
from interaction between participants and the environment
when considering continuous coupling instead of intermittent
parametric adaptation. The visual entrainment of the paddle
movement by the ball movement is an ecological control stra-
tegy that provides crucial advantages to the embodied human
motor control of action over a computational one (Schaal
2006; Beer 1998). As the CPG is continuously coupled with
the ball, the timing synchronization between the agent and the
environment precludes the need for an internal time-keeper.
The behavior of the embodied and situated participant arises
from the ongoing interaction between his/her NMS and the
environment. According to the results presented in this study,
the human ball-bouncing model does not need to integrate
explicit internal representation of time interval. The timing
emerges from the coupled system’s intrinsic dynamics.

The ecology of the cycle-to-cycle correction of bounce error
All the models tested in this study, as well as in Avrin
et al (2016, 2017a,b); Ronsse and Sternad (2010) considered
that an intermittent coupling was responsible for the paddle
amplitude adaptation. This coupling takes the form of an auto-
regressive adaptation law relying on event-based information
(the perception of the bounce error). As a consequence, it
cannot be the result of some sort of continuous coupling
supporting the prospective hypothesis. However, in the CPG-
based models presented in this paper and in Avrin et al (2016,
2017a,b), the movement variable (∆u) is directly linked to an
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information variable ε perceived in the environment. Thus,
this adaptation law stays in agreement with the ecological
approach to the perception-action cycle (Warren 1988, 2006).
Indeed, there is no need for high-level information processing
such as the computation of an intermediate variable or internal
representation. In addition, the information variable does
not specify a reference state to be reached in the future,
contrary to the optimal controllers presented in Ronsse et al
(2010); Ronsse and Sternad (2010), which are closer to the
predictive control approach.As such, these optimal controllers
would suggest that the amplitude adaptation corresponds to a
high-level cognitive process, as assumed by the information-
processing and classical cognitivism approaches (Collins
et al 1998). On the contrary, the adaptation law implemented
in this paper directly modifies the CPG excitability u when
the bounce error ε is perceived. With this in mind, even the
auto-regressive adaptation law presented in this paper can
result from a direct perception process and thus be viewed as
ecological.

Benefits for robotics applications A traditional approach to
robot control is to actively regulate all the relevant variables
of the movement at the price of high computational costs and
complex priorities management. A dissatisfaction with the
performance of this traditional vision of behavioral intelli-
gence led roboticists to consider alternative control strategies.
The fields of reactive robot control (as the behavioral-based
robotic approach) and emergent robot control are directly
driven by the intent to take full advantage of the environment
dynamics (Roennau et al 2014; Manoonpong et al 2008). The
passive walker, as proposed in McGeer et al (1990), is an ex-
ample of a robot using the passive stability of the locomotion
task to reduce the computational cost of behavior control. An
active control can complement the passive control strategy
to enlarge the attraction domain of the agent-environment
dynamic system and increase the behavior robustness (Collins
et al 2005). Similarly, instead of overdriving the limbs, it
is known that humans tune into the resonant frequency of
their limbs when possible, to gain stability and save energy.
Based on this observation, Williamson (1998) proposed to
control rhythmic arm movements of humanoid robots by
tuning into the resonant frequency of the mechanical arm
using proprioceptive sensory feedback. Resonance tuning and
entrainment phenomena emerging from continuous visual
couplings between the agent and the environment are however
much less exploited in robotics. This study demonstrated that
the continuous sensorimotor feedback driving the CPG should
not be limited to proprioceptive information. Robot control
could greatly benefit from resonance phenomena resulting
from continuous visual feedback from the environment, which
allowed the paddle to be in the right place at the right time
to stabilize the bouncing ball without needing any explicit
internal representation of the environment or additional con-

trol of the paddle acceleration at impact. The fact of being
coupled with the ball velocity instead of ball position leads to
a control architecture that has both a prospective advantage
(velocity provides information about the future state of the
ball) and a resonant tuning advantage that brings stability and
energy saving.

5 Conclusion

The continuously changing dynamic properties of the envi-
ronment require a constant adaptation of humans’ movements
based on task goals. Such adjustments rely upon information-
movement couplings involved during the on-going movement
execution. This study investigated these couplings by ana-
lyzing the human ball-bouncing task, which presents both
timing synchronization and spatial error correction processes
and thus constitutes a relevant benchmark for the study of
human motor control of rhythmic tasks. Previous studies
already evidenced that human participants tend to hit the ball
in what has been called the passive stability regime. This
study brought decisive elements to explain the convergence
toward this preferential limit cycle by analyzing the influence
of gravity on the participants’ steady-state behavior. The
intervention of a resonance tuning phenomenon, resulting
from the continuous coupling between the perception of the
ball trajectory and the paddle trajectory, was shown to be an
essential block of the human behavior model, in agreement
with the strong on-line hypothesis stating that the visual cont-
rol of action is achieved on-line, without requiring the use of
model-based control strategies.
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