

Energy Management of a Parallel Hybrid Electric Vehicle Equipped with a Voltage Booster

Souad Hadj-Said, Guillaume Colin, Ahmed Ketfi-Cherif, Yann Chamaillard

▶ To cite this version:

Souad Hadj-Said, Guillaume Colin, Ahmed Ketfi-Cherif, Yann Chamaillard. Energy Management of a Parallel Hybrid Electric Vehicle Equipped with a Voltage Booster. IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling (ECOSM), Sep 2018, Changchun, China. pp.606 - 611, 10.1016/j.ifacol.2018.10.145. hal-01934625

HAL Id: hal-01934625 https://univ-orleans.hal.science/hal-01934625

Submitted on 26 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Energy Management of a Parallel Hybrid Electric Vehicle Equipped with a Voltage Booster

S. Hadj-Said *,** G. Colin ** A. Ketfi-Cherif* Y. Chamaillard **

* Renault S.A.S, France (e-mail: souad.hadj-said@renault.com; ahmed.ketfi-cherif@renault.com).
*** Univ. Orléans, PRISME, EA 4229, F45072, Orléans, France (e-mail: guillaume.colin@univ-orleans.fr; yann.chamaillard@univ-orleans.fr)

Abstract: In this paper, the optimization problem of energy management for a parallel hybrid electric vehicle equipped with a Step-Up converter is resolved analytically using Pontryagin's Maximum Principle (PMP). The analytical method is based on convex models, which are identified from the reference models. A numerical method based on the reference models is also used in order to validate the analytical method by comparing their results. In this work, two optimization variables are considered: the power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM) and the output voltage of the booster. The simulation results show that the analytical approach reduces considerably the computing time and has an very low suboptimality comparing to the numerical method.

Keywords: Energy Management Strategy, Hybrid Electric Vehicles (HEV), Step-Up Converter, Analytical Method, Convex optimization, Pontryagin's Maximum Principle (PMP).

1. INTRODUCTION

The continued increase of vehicles number in the world poses two major issues: energy and pollution. This is why, the automotive manufacturers design hybrid vehicles in order to reduce energy consumption and pollution emissions. The study presented in this paper focuses on the energy management of Hybrid Electric Vehicles (HEV). The energy management consists of calculating optimal controls that minimize the energy consumption. The studied vehicle is composed of an Internal Combustion Engine (ICE), one or more Electric Machines (EM), and a battery. This energy storage element delivers a continuous and almost constant voltage. Depending on the need, the adaptation of the electric energy between the battery and the EM is ensured by electric converters, among them the Step-Up which is a DC/DC converter. The role of the Step-up is to boost the battery voltage in order to increase the EM performance. The losses produced by the electric components depend strongly on the output Step-Up voltage. This is why we propose to control the voltage to minimize the electric consumption.

There are many approaches to design an optimal energy management strategy (Zhang et al., 2015), the most known are: deterministic Dynamic Programming (DP) (Pérez et al., 2006; Debert et al., 2010), stochastic DP (Johannesson et al., 2007; Asher et al., 2017), and Pontryagin's Maximum Principle (PMP) (Serrao et al., 2009; Kim et al., 2011; Stockar et al., 2011; Ahmadizadeh et al., 2017). While it can potentially give the globally optimal energy management, dynamic programming is computationally expensive, which limits its application to low-order systems (typically two states). The PMP offers the possibility to compact the optimization problem by defining the Hamiltonian function to handle the balance between the fuel cost and other related constraints, typically the battery state of charge. However, the main difficulty of the PMP method remains in finding the co-state.

The PMP method is widely used in this area, both analytically and numerically. In Hadj-Said et al. (2017), we proposed an analytical method to optimize power split and gear box using PMP. In the latter, we used a linear electric model while in this paper the electric model is quadratic. In Elbert et al. (2014) and Ambühl et al. (2010), the optimal torque split and the engine state On/Off were computed analytically using the PMP approach for a serial hybrid electric bus. Pham et al. (2016) proposed to calculate in addition the optimal EM On/Off analytically using the PMP, while in Nüesch et al. (2014), the engine On/Off and gearshift stategies were given numerically by a combination of DP and PMP. In this study, the main contributions are: finding the optimal power split and the output Step-Up voltage analytically using PMP.

Concerning the voltage optimization, in Toshifumi Yamakawa (2011), the inventors proposed to implement a voltage setting map as a function of the rotational speed and the torque of the EM composed by two regions: a non-boost region and a boost region. These regions were determined by minimizing the EM losses.

The main objectives of this paper is to find an energy management solution that minimizes the energy consumed by the vehicle. An analytical solution, based on PMP, is proposed for energy management of a parallel HEV.

This paper is organized as follows. In section 2, the reference and the analytical models are presented. In section 3, the off-line resolution of the optimization problem is proposed in two steps: first, the optimal power and then the voltage. In section 4, the implementation of the analytical solutions is presented. Finally, the simulation results obtained analytically in the MIL (Model In the Loop) are compared to the results obtained numerically in section 5. The purpose of this comparison is to validate the analytical solutions.

2. MODELING

As shown in Fig.1, the HEV consists of a battery, a Step-Up, an electric motor (EM), and an ICE delivering power to the wheels via a gearbox.

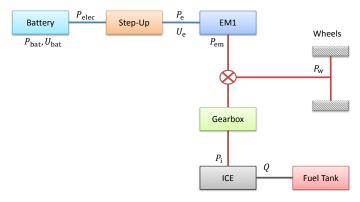


Fig. 1. HEV Powertrain

The wheel power $P_{\rm w}$, demanded by the driver, is calculated from the vehicle speed set-point. So, the vehicle speed is considered as an input of the optimization, and is given by different cycles. The optimization variables are the output step-up voltage $U_{\rm e}$ and the mechanical power of the electric machine $P_{\rm em}$.

2.1 Vehicle Model

The vehicle dynamics are governed by the following equations:

$$F_{\rm w}(t) = m_{\rm vec} \dot{v}(t) + F_{\rm res}(t)[N] \tag{1}$$

$$T_{\mathbf{w}}(t) = F_{\mathbf{w}}(t).R_{\mathbf{w}}[N.m]$$
(2)

$$\omega_{\rm w}(t) = \frac{v(t)}{R_{\rm w}} [rad/s] \tag{3}$$

$$P_{\rm w}(t) = T_{\rm w}(t)\omega_{\rm w}(t)[W] \tag{4}$$

where $F_{\rm w}$ is the force at the wheels, $F_{\rm res}(t) = F_{\rm tires} + F_{\rm aero}(t)$ the resistive force which includes the aerodynamic force $(F_{\rm aero}(t) = 0.5.\rho.S.Cx.v^2(t))$ and the tire resistance $(F_{\rm tires}$, here assumed constant), $m_{\rm vec}[kg]$ the total vehicle mass and $R_{\rm w}[m]$ the wheel radius. $P_{\rm w}$, $T_{\rm w}$ and $\omega_{\rm w}$ are the power, the torque and the rotational speed of the wheels.

The relation between the rotational speed and those of the engine (ω_i) and the EM (ω_e) is given by:

$$\omega_{\rm i}(t) = \omega_{\rm w}(t) R_{\rm Gear}(t) \tag{5}$$

$$\omega_{\rm e}(t) = \omega_{\rm w}(t) R_{\rm EM} \tag{6}$$

where $R_{\rm EM}$ and $R_{\rm Gear}$ are respectively the electric ratio and the gear ratio which are determined in advance of optimization.

2.2 Reference Model

Engine The engine is modeled by its fuel consumption to deliver the mechanical power P_i . This consumption is expressed by the fuel flow (Q).

$$Q(t) = \dot{m}_{\text{fuel}}(T_{i}(t), \omega_{i}(t)) [g/s]$$
(7)

where $\dot{m}_{\text{fuel}}(T_i(t), \omega_i(t))$ is the fuel consumption map and T_i is the engine torque. The mechanical power generated by the engine is expressed by: $P_i = T_i \omega_i$ [W] and limited by two functions of ω_i :

$$\underline{P}_{i}(\omega_{i}(t)) \leq P_{i}(t) \leq P_{i}(\omega_{i}(t))$$
(8)

Electric Motor The electric motor model expresses the electric power produced by the EM which includes the mechanical power delivered and the losses obtained from the specific power loss of the EM. So, the electric power $P_{\rm e}$ has the following expression:

$$P_{\rm e}(t) = P_{\rm em}(t) + loss(T_{\rm e}(t), \omega_{\rm e}(t), U_{\rm e}(t)) [W] \qquad (9)$$

where $loss(T_{\rm e}(t), \omega_{\rm e}(t), U_{\rm e}(t))$ is the electric motor losses map and $T_{\rm e}$ is the EM torque. The mechanical power generated by the EM is expressed by: $P_{\rm em}(t) = T_{\rm e}(t)\omega_{\rm e}(t)$ [W] and limited by two functions of $\omega_{\rm e}$ and $U_{\rm e}$:

$$\underline{P}_{e}(\omega_{e}(t), U_{e}(t)) \le P_{em}(t) \le \overline{P}_{e}(\omega_{e}(t), U_{e}(t))$$
(10)

Step-Up The Step-Up is modeled by its losses $(P_{\rm S})$. They are expressed with respect to the electric power produced by the electric motors, the battery voltage, and the output voltage of the Step-up. In a step-up there are losses caused by conduction ($P_{\rm Conduction}$) as well as losses caused by switching of diodes and IGBT ($P_{\rm Switching}$). Therefore, $P_{\rm S}$ are given by (Badin, 2013):

$$P_{\rm S}(i_{\rm bat}, U_{\rm e}) = P_{\rm Conduction} + P_{\rm Switching}[W] \qquad (11)$$
$$P_{\rm Conduction} \text{ is given by:}$$

 $P_{\text{Conduction}} = (R_{\text{Coil}} + rR_{\text{IGBT}} + (1 - r)R_{\text{Diode}})i_{\text{bat}}^2$ (12) where R_{Coil} is the coil resistance, R_{IGBT} is the IGBT resistance, R_{Diode} is the diode resistance and r is the duty cycle defined by:

$$r = \frac{U_{\rm e} - U_{\rm bat}}{U_{\rm e}}$$

 $P_{\text{Switching}}$ is given by:

 $P_{\text{Switching}} = V_0 U_e i_{\text{bat}} + (rV_{\text{IGBT}} + (1 - r)V_{\text{Diode}})i_{\text{bat}}$ (13) where V_{IGBT} is the IGBT voltage, and V_{Diode} is the diode voltage.

When $U_{\rm e} = U_{\rm bat}$, $P_{\rm Switching} = 0$ and $P_{\rm Conduction}$ is given by:

$$P_{\text{Conduction}} = \begin{cases} (R_{\text{Coil}} + R_{\text{Diode}})i_{\text{bat}}^2 & \text{if } P_{\text{elec}} \ge 0\\ (R_{\text{Coil}} + R_{\text{IGBT}})i_{\text{bat}}^2 & \text{if } P_{\text{elec}} < 0 \end{cases}$$

 $P_{\rm S}$ can take the following general form regarding $i_{\rm bat}$:

$$P_{\rm S}(i_{\rm bat}, U_{\rm e}) = U_{\rm S}(U_{\rm e})i_{\rm bat} + R_{\rm S}i_{\rm bat}^2 \tag{14}$$

where,
$$R_{\rm S} = R_{\rm Coil} + (1 - r)R_{\rm Diode} + rR_{\rm IGBT}$$

Battery The battery is modeled as a resistive circuit (Badin, 2013; Murgovski et al., 2012) and the battery power is given by:

$$P_{\text{bat}}(t) = OCV(SoC)i_{\text{bat}}(t)[W]$$
(15)

$$P_{\text{bat}}(t) = P_{\text{elec}}(t) + R_{\text{bat}}(SoC)i_{\text{bat}}^2(t)$$
(16)

$$P_{\rm elec}(t) = P_{\rm e}(t) + P_{\rm S}(t) \tag{17}$$

By inserting (17) and (14) in (15), i_{bat} is calculated as follows:

$$i_{\rm bat}(t) = \frac{U_{\rm tot} - \sqrt{U_{\rm tot}^2 - 4R_{\rm tot}P_{\rm e}}}{2R_{\rm tot}}$$
 (18)

where $U_{\text{tot}} = OCV(SoC) - U_{\text{S}}(U_{\text{e}})$ and $R_{\text{tot}} = R_{\text{S}} + R_{\text{bat}}$. The State of Charge (SoC) of the battery is defined as:

$$\dot{SoC}(t) = -\frac{\dot{i}_{\text{bat}}(t)}{Q_{max}} \tag{19}$$

where $Q_{max}[C]$ is the maximum battery charge.

2.3 Convex Model

Some assumptions and approximations were made to make the models convex.

Engine The fuel flow Q is modeled by the "Willans Lines Model" as described in Rizzoni et al. (1999). Its analytical model is given by:

$$Q(P_{i}) = \begin{cases} a_{1}P_{i} + Q_{0} & \text{if } \underline{P}_{i} \le P_{i} \le P_{\lim} \\ a_{2}(P_{i} - P_{\lim}) + Q_{\lim} & \text{if } P_{\lim} \le P_{i} \le \overline{P}_{i} \end{cases}$$
(20)

where Q_0 is the idle fuel consumption. The parameters Q_0 , P_{lim} and Q_{lim} depend on ω_i , while, a_1 , a_2 are assumed constant, where $a_1 << a_2$. Fig. 2 shows that the approximated engine model is sufficiently representative of the reference engine model. $RMSE_{\text{fuel}}$ is the Root Mean Square Error between the reference model (7) and the convex model (20).

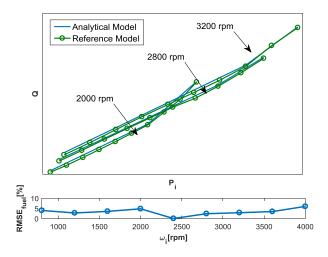


Fig. 2. Validation of the convex model of $Q[g.s^{-1}]$ in function of $P_i[W]$ (axes have been removed for confidentiality reasons)

EM, Battery, and Step-Up Concerning the electrical part, it is assumed that the open circuit voltage (OCV) is constant in the definition set of SoE. Therefore, the State of Energy (SoE) can be used instead of SoC as:

$$\dot{SoE}(t) = -\frac{OCVi_{\text{bat}}(t)}{E_{max}} = -\frac{P_{\text{bat}}(t)}{E_{max}}$$
(21)

where $E_{max} = OCVQ_{max}[J]$ is the maximal battery energy. The SoE[%] is limited by:

$$20 \le SoE(t) \le 80 \tag{22}$$

The analytical model of the battery power is given by:

$$P_{\rm bat}(T_{\rm e},\omega_{\rm e},U_{\rm e}) = \begin{cases} a^{-}P_{\rm em}^{2} + b^{-}P_{\rm em} + c \text{ if } \underline{P}_{\rm e} \le P_{\rm em} \le 0\\ a^{+}P_{\rm em}^{2} + b^{+}P_{\rm em} + c \text{ if } 0 \le P_{\rm em} \le \overline{P}_{\rm e} \end{cases}$$
(23)

where, a^{\pm} , b^{\pm} and c are modeled as following:

C

$$a^{\pm}(\omega_{\rm e}, U_{\rm e}) = \frac{\sum_{m=0}^{2} \sum_{l=0}^{2} \alpha_{ml}^{\pm} U_{\rm e}^{l} \omega_{\rm e}^{m}}{\omega_{\rm e}^{2}}$$
(24)

$$b^{\pm}(\omega_{\rm e}, U_{\rm e}) = \frac{\sum_{m=0}^{2} \sum_{l=0}^{2} \beta_{ml}^{\pm} U_{\rm e}^{l} \omega_{\rm e}^{m}}{\omega_{\rm e}}$$
(25)

$$t(\omega_{\rm e}, U_{\rm e}) = \sum_{m=0}^{2} \sum_{l=0}^{2} \gamma_{ml} U_{\rm e}^{l} \omega_{\rm e}^{m}$$

$$(26)$$

The P_{bat} model has been validated as shown in Fig. 3. Where, $RMSE_{\text{EM}}$ is the root mean square error between the reference model (15) and the convex model (23).

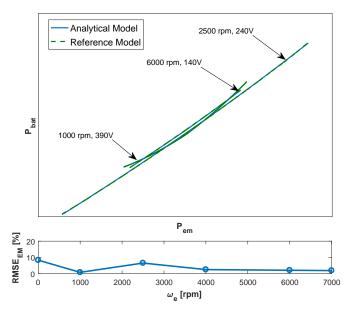


Fig. 3. Validation of the convex model of $P_{\text{bat}}[W]$ in function of $P_{\text{em}}[W]$ (axes have been removed for confidentiality reasons)

3. OFF-LINE OPTIMIZATION

In this section, the off-line optimization is presented. It is recalled that the rotational speeds ω_i and ω_e are determined from (5) and (6).

3.1 Power Split Optimization

Here, to optimize the EM power (P_{em}) , we assume that the output Step-Up voltage $U_{\rm e}$ is known. In a parallel HEV, ICE and EM are mechanically connected to the wheels, therefore:

$$P_{\rm w}(t) = P_{\rm em}(t) + P_{\rm i}(t) \tag{27}$$

The Power Optimization Problem (POP) to determine $P_{\rm em}^{\rm opt}$ is formulated as:

$$POP: \begin{cases} \min_{P_{\rm em}} J\\ SoE(t) = -\frac{P_{\rm bat}(P_{\rm em}(t))}{E_{max}}\\ 0 \le SoE(t) \le 100\\ P_{\rm i} + P_{\rm em} = P_{\rm w}\\ \underline{P}_{\rm i}(\omega_{\rm i}, P_{\rm w}) \le P_{\rm i}(t) \le \overline{P}_{\rm i}(\omega_{\rm i}, P_{\rm w})\\ \underline{P}_{\rm e}(\omega_{\rm e}, U_{\rm e}, P_{\rm w}) \le P_{\rm em}(t) \le \overline{P}_{\rm e}(\omega_{\rm e}, U_{\rm e}, P_{\rm w}) \end{cases}$$

$$(28)$$

where:

$$J = \int_{t_0}^{t_f} Q(P_{\mathbf{i}}(t), \omega_{\mathbf{i}}(t)) dt$$
⁽²⁹⁾

SoE is the state, $P_{\rm em}$ is the control, and from (27) we obtain:

$$\underline{P}_{i}(\omega_{i}, P_{w}) = \max(\underline{P}_{i}(\omega_{i}), P_{w} - P_{e}(\omega_{e}, U_{e}))$$

$$\overline{P}_{i}(\omega_{i}, P_{w}) = \min(\overline{P}_{i}(\omega_{i}), P_{w} - \underline{P}_{e}(\omega_{e}, U_{e}))$$

$$\underline{P}_{e}(\omega_{e}, U_{e}, P_{w}) = \max(\underline{P}_{e}(\omega_{e}, U_{e}), P_{w} - \overline{P}_{i}(\omega_{i}))$$

$$\overline{P}_{e}(\omega_{e}, U_{e}, P_{w}) = \min(\overline{P}_{e}(\omega_{e}, U_{e}), P_{w} - P_{i}(\omega_{i}))$$

To find the optimal power, the PMP is used. So, according to the PMP, minimizing J is equivalent to minimizing the Hamiltonian function which is calculated from (20) and (23), as follows:

$$H_{\rm hyb}(P_{\rm i}, P_{\rm em}, P_{\rm w}, \lambda) = Q(P_{\rm i}) + \lambda(t)(P_{\rm bat}(P_{\rm em}))$$
(30)
where λ is the Langrange Factor

where λ is the Langrange Factor.

The Hamiltonian function H_{hyb} is the sum of two piecewise functions. So, to find $P_{\rm em}^{\rm opt}$, first, we have to calculate the expression of $H_{\rm hyb}$. This is done by considering the points where the functions Q and P_{bat} change their coefficients. These points are: $P_{\rm em} = P_{\rm w} - P_{\rm lim}$ and $P_{\rm em} = 0$. They are called here: "The Particular Points".

The general expression of $H_{\rm hyb}$ is:

 $H_{\rm hyb}(P_{\rm em}) = A_1(P_{\rm w} - P_{\rm em}) + A_0 + \lambda(B_2 P_{\rm em}^2 + B_1 P_{\rm em} + B_0)$ A_1, A_0, B_2, B_1 and B_0 are determined, according to (20), (23) and (27), as follows:

- $P_{\rm em} > P_{\rm w} P_{\rm lim}$ then $A_0 = Q_0, A_1 = a_1$
- $P_{\rm em} < P_{\rm w} P_{\rm lim}$ then $A_0 = Q_{\rm lim} a_2 P_{\rm lim}$, $A_1 = a_2$ $P_{\rm em} > 0$ then $B_1 = b^+$, $B_2 = a^+$ $P_{\rm em} < 0$ then $B_1 = b^-$, $B_2 = a^-$

Since H_{hyb} is convex, the optimum P_{em}^* is the solution of the following equation:

$$\frac{\partial H_{\rm hyb}}{\partial P_{\rm em}} = 0 \tag{31}$$

Then,

$$P_{\rm em}^* = \frac{A_1 - \lambda B_1}{2\lambda B_2}$$

But $H_{\rm hyb}$ is a piecewise function then $P_{\rm em}^*$ should be compared to the particular points to determine A_1 , B_1 and B_2 . In addition, $P_{\rm em}^*$ must be in the admissible set $[\underline{P}_{e}(P_{w}), \overline{P}_{e}(P_{w})]$. Therefore, the following equations are studied regarding $P_{\rm w}$ and λ :

(a)
$$P_{\rm em}^* = \overline{P}_{\rm e}(P_{\rm w}) \Leftrightarrow \lambda = \lambda_1 = \frac{A_1}{B_1 + 2B_2 \overline{P}_{\rm e}(P_{\rm w})}$$

(b)
$$P_{\text{em}}^* = (P_{\text{w}} - P_{\text{lim}}) \Leftrightarrow \lambda = \lambda_2 = \frac{A_1}{B_1 + 2B_2(P_{\text{w}} - P_{\text{lim}})}$$

(c)
$$P_{\rm em}^* = 0 \Leftrightarrow \lambda = \lambda_0 = \frac{A_1}{B_1}$$

(d)
$$P_{\text{em}}^* = \underline{P}_{\text{e}}(P_{\text{w}}) \Leftrightarrow \lambda = \lambda_3 = \frac{A_1}{B_1 + 2B_2 P} (P_{\text{w}})$$

We can note that the particular factors λ_0 , λ_1 , λ_2 and λ_3 depend on $P_{\rm w}$. Therefore, the optimal solution $P_{\rm em}^{\rm opt}$ is calculated for all the admissible set: $P_{w} \in [\underline{P}_{w}, P_{w}]$, where $\underline{\underline{P}}_{w} = \underline{\underline{P}}_{i}(\omega_{i}) + \underline{\underline{P}}_{e}(\omega_{e}, U_{e}) \text{ and } \overline{\underline{P}}_{w} = \overline{\underline{P}}_{i}(\omega_{i}) + \overline{\underline{P}}_{e}(\omega_{e}, U_{e}).$ For instance, if $\underline{P}_{w} < \underline{\underline{P}}_{i} \Rightarrow \underline{P}_{em} < 0 \Rightarrow B_{1} = b^{-}, B_{2} = a^{-}.$ And if $\underline{P}_{w} - \underline{P}_{lim} > \underline{\underline{P}}_{e}$ then $\forall \underline{P}_{w} \in [\underline{P}_{lim} + \underline{\underline{P}}_{e}, \underline{\underline{P}}_{i}], P_{em}^{opt}$ is given as shown in the table of Fig. 4.

λ	0	λ_1	λ_2	$_1$ λ	22	λ_3	$+\infty$
$P_{\rm em}^{\rm opt}$	$\overline{P}_{\rm e}$	$\frac{a_1}{2}$	$\frac{-\lambda b^{-}}{\lambda a^{-}}$	$P_{\rm w} - P_{\rm lim}$	$\frac{a_2 - \lambda b^-}{2\lambda a^-}$	\underline{P}	e

Fig. 4. An example of $P_{\rm em}^{\rm opt}$ according to $P_{\rm w}$ and λ

where,
$$\lambda_1 = \frac{a_1}{b^- + 2a^-\overline{P}_{e}}, \ \lambda_{21} = \frac{a_1}{b^- + 2a^-(P_{w} - P_{\lim})}, \ \lambda_{22} = \frac{a_2}{b^- + 2a^-(P_{w} - P_{\lim})}, \ \lambda_{3} = \frac{a_2}{b^- + 2a^-\underline{P}_{e}}.$$

3.2 Voltage Optimization

In this section, the optimization of the output Step-Up voltage will be presented. Here, we assume that the electric torque $T_{\rm e}$ is known. The PMP method is applied to solve the Voltage Optimization Problem (VOP):

$$VOP: \begin{cases} \min_{U_{e}} H_{hyb}(P_{i}, P_{em}, U_{e}, \lambda) \\ SoE(t) = -\frac{P_{bat}(P_{em}, U_{e})}{E_{max}} \\ 0 \le SoE(t) \le 100 \\ U_{e} \in [U_{bat}, \overline{U}_{e}] \end{cases}$$
(32)

where the Hamiltonian function is given as:

$$H_{\rm hyb}(P_{\rm i}, P_{\rm em}, U_{\rm e}, \lambda) = Q(P_{\rm i}) + \lambda P_{\rm bat}(P_{\rm em}, U_{\rm e})$$

We can note that Q does not depend on $U_{\rm e}$, therefore:

$$U_{\rm e}^{\rm opt} = \arg\min_{U_{\rm e}} H_{\rm hyb} = \arg\min_{U_{\rm e}} P_{\rm bat}$$

So, to find U_{e}^{opt} , we must solve the following equation:

$$\frac{\partial P_{\text{bat}}}{\partial U_{\text{e}}} = 0$$

According to (23), P_{bat} can be written in the following form:

$$P_{\rm bat}(T_{\rm e},\omega_{\rm e},U_{\rm e}) = U_2(T_{\rm e},\omega_{\rm e})U_{\rm e}^2 + U_1(T_{\rm e},\omega_{\rm e})U_{\rm e} + U_0(T_{\rm e},\omega_{\rm e})$$
(33)

Then,
$$\frac{\partial P_{\text{bat}}}{\partial U_{\text{e}}} = 0 \Leftrightarrow U_{\text{e}}^*(T_{\text{e}}, \omega_{\text{e}}) = \frac{-U_1(T_{\text{e}}, \omega_{\text{e}})}{2U_2(T_{\text{e}}, \omega_{\text{e}})}$$

where:

where:

$$U_{2}(T_{\rm e},\omega_{\rm e}) = \begin{cases} \sum_{m=0}^{2} (\alpha_{m2}^{-}T_{\rm e}^{2} + \beta_{m2}^{-}T_{\rm e} + \gamma_{m2})\omega_{\rm e}^{m} & \text{if } T_{\rm e} \leq 0\\ \sum_{m=0}^{2} (\alpha_{m2}^{+}T_{\rm e}^{2} + \beta_{m2}^{+}T_{\rm e} + \gamma_{m2})\omega_{\rm e}^{m} & \text{if } T_{\rm e} \geq 0 \end{cases}$$

$$U_{1}(T_{\rm e},\omega_{\rm e}) = \begin{cases} \sum_{m=0}^{2} (\alpha_{m1}^{-}T_{\rm e}^{2} + \beta_{m1}^{-}T_{\rm e} + \gamma_{m1})\omega_{\rm e}^{m} & \text{if } T_{\rm e} \le 0\\ \sum_{m=0}^{2} (\alpha_{m1}^{+}T_{\rm e}^{2} + \beta_{m1}^{+}T_{\rm e} + \gamma_{m1})\omega_{\rm e}^{m} & \text{if } T_{\rm e} \ge 0 \end{cases}$$

Finally, since $U_2(T_e, \omega_e) > 0 \forall T_e, \omega_e, U_e^{opt}$ is given as a function of T_e and ω_e (Fig. 5), by:

$$U_{\rm e}^{\rm opt} = \begin{cases} U_{\rm bat} & \text{if} & U_{\rm e}^*(T_{\rm e},\omega_{\rm e}) \leq U_{\rm bat} \\ U_{\rm e}^*(T_{\rm e},\omega_{\rm e}) & \text{if} & U_{\rm bat} \leq U_{\rm e}^*(T_{\rm e},\omega_{\rm e}) \leq \overline{U}_{\rm e} \\ \overline{U}_{\rm e} & \text{if} & U_{\rm e}^*(T_{\rm e},\omega_{\rm e}) \geq \overline{U}_{\rm e} \end{cases}$$
(34)

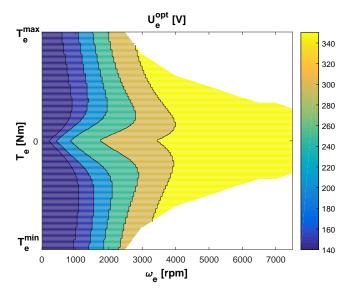


Fig. 5. The optimal Voltage regarding $T_{\rm e}$ and $\omega_{\rm e}$ (the torque axe has been removed for confidentiality reasons)

4. ON-LINE OPTIMIZATION

This section describes how the analytical and numerical approaches are implemented in the Model In Loop (MIL) structure.

Fig. 6 shows the on-line optimization process in the MIL. Actually, by taking into account the engine, the EM and the Step-Up dynamics, at an instant t, the power optimization receives the current voltage U_e^c , while the voltage optimization takes the current electric torque T_e^c .

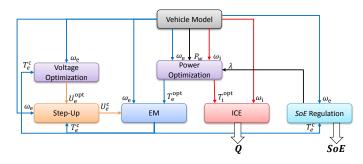


Fig. 6. On-Line Optimization for a Parallel HEV

For the optimal power, as shown in Fig.4, $P_{\rm em}^{\rm opt}$ is implemented in the form of tables regarding $P_{\rm w}$ and λ . Then, at an instant t, the expression of $P_{\rm em}^{\rm opt}$ is found by placing $P_{\rm w}(t)$ and $\lambda(t)$ with respect to their intervals. Concerning the voltage $U_{\rm e}$, the optimal solution given in (34) is implemented. The co-state λ is dertermined by a PID regulator of the SoE.

The diagram in Fig.7 explains the numerical approach to resolve POP and VOP by applying PMP and using the reference models. First, at every instant t, the controls $P_{\rm em}$ and $U_{\rm e}$ are meshed from their minimum to their maximum. Then, the numerical value of $H_{\rm hyb}$ is calculated using the complete models of Q and $P_{\rm bat}$ (given in (20), (23), (16) and (11)). Finally, the optimal control $P_{\rm em}^{\rm opt}, U_{\rm e}^{\rm opt}$ is the one which corresponds to the minimum value of $H_{\rm hyb}$. In this approach, the optimality of $U_{\rm e}^{\rm opt}$ and $P_{\rm em}^{\rm opt}$ depends on the meshing. This is why the numerical method was tested in simulation for a meshing of 10 points (called " Num_1 " in section 5) and 100 points (called " Num_2 " in section 5)

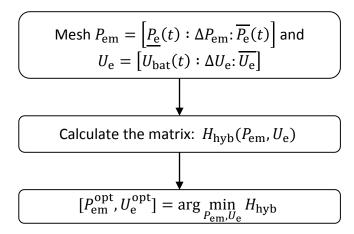


Fig. 7. Implementation of the numerical method

5. SIMULATION RESULTS

In this section, the fuel consumption and SoE trajectory results of the analytical method are compared to those of the numerical method in order to establish the performances of the analytical method. The fuel consumption (FC) and the electric losses (EL) are obtained by applying the strategies on the reference models.

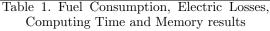
Table 1 shows that the analytical method has almost the same fuel and electric consumptions as the ones found by the numerical methods for all studied cycles. For the urban driving, the analytical method is better than " Num_1 ". In addition, the average values of the Computing Time (CT) and Memory Space (MS) of the analytical method are lower than those of the numerical method.

Fig. 8 shows that both methods provide a similar SoE trajectory and almost the same optimal controls for the ARTEMIS highway cycles.

6. CONCLUSIONS

In this paper, an analytical approach has been presented and applied to calculate the energy management strategy for a parallel HEV. The results of the comparison show that the analytical method, which is based on analytical models, provides an optimal solution close to the one given by the numerical method, thereby validating the

Cycle	Strategy	FC	EL	СТ	MS	7
		[L/100km]	[Wh]	[ms]	[Bytes]	
ARTEMIS	Analytical	6.26	616	0.5	44	E
Highway	Num_1	6.26	602	1.2	80	
	Num_2	6.25	615	2	530	
ARTEMIS	Analytical	5.28	195	0.5	44	1
Urban	Num_1	5.30	192	1.2	80	
	Num_2	5.24	193	2	530	$ _{\mathrm{H}}$



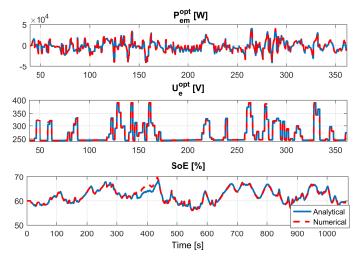


Fig. 8. The optimal controls and the SoE trajectory obtained by the numerical method " Num_2 " and the analytical method for the ARTEMIS Highway cycle

approximated generic models. The implementation of the analytical solutions is easier and requires less computing time than the numerical resolution. This encourages their use for embedded optimal control.

As perspectives, the analytical method will be applied to other HEV architectures (serial, serial-parallel), and to more complex configurations (several EM and batteries). This strategy will be implemented for real-time energy management. The robustness analysis will be studied with respect to the parameters of the EM model and those of the engine.

REFERENCES

- Ahmadizadeh, P., Mashadi, B., and Lodaya, D. (2017). Energy management of a dual-mode power-split powertrain based on the pontryagin's minimum principle. *IET Intelligent Transport Systems*, 11(9), 561–571.
- Ambühl, D., Sundström, O., Sciarretta, A., and Guzzella, L. (2010). Explicit optimal control policy and its practical application for hybrid electric powertrains. *Control engineering practice*, 18(12), 1429–1439.
- Asher, Z.D., Baker, D.A., and Bradley, T.H. (2017). Prediction error applied to hybrid electric vehicle optimal fuel economy. *IEEE Transactions on Control Systems Technology*.
- Badin, F. (2013). Hybrid Vehicles. Technip.
- Debert, M., Colin, G., Chamaillard, Y., Mensler, M., Ketficherif, A., and Guzzella, L. (2010). Energy management

of a high efficiency hybrid electric automatic transmission. Technical Report 2010-01-1311.

- Elbert, P., Nuesch, T., Ritter, A., Murgovski, N., and Guzzella, L. (2014). Engine on/off control for the energy management of a serial hybrid electric bus via convex optimization. *Vehicular Technology, IEEE Transactions* on, 63(8), 3549–3559.
- Hadj-Said, S., Colin, G., Ketfi-Cherif, A., and Chamaillard, Y. (2017). Analytical solution for energy management of parallel hybrid electric vehicles. *IFAC-PapersOnLine*, 50(1), 13872–13877.
- Johannesson, L., Asbogard, M., and Egardt, B. (2007). Assessing the potential of predictive control for hybrid vehicle powertrains using stochastic dynamic programming. *IEEE Transactions on Intelligent Transportation* Systems, 8(1), 71–83.
- Kim, N., Cha, S., and Peng, H. (2011). Optimal control of hybrid electric vehicles based on pontryagin's minimum principle. *Control Systems Technology, IEEE Transactions on*, 19(5), 1279–1287.
- Murgovski, N., Johannesson, L., Sjöberg, J., and Egardt, B. (2012). Component sizing of a plug-in hybrid electric powertrain via convex optimization. *Mechatronics*, 22(1), 106–120.
- Nüesch, T., Elbert, P., Flankl, M., Onder, C., and Guzzella, L. (2014). Convex optimization for the energy management of hybrid electric vehicles considering engine start and gearshift costs. *Energies*, 7(2), 834–856.
- Pérez, L.V., Bossio, G.R., Moitre, D., and García, G.O. (2006). Optimization of power management in an hybrid electric vehicle using dynamic programming. *Mathematics and Computers in Simulation*, 73(1), 244– 254.
- Pham, T.H., Kessels, J.T.B.A., van den Bosch, P.P.J., and Huisman, R.G.M. (2016). Analytical solution to energy management guaranteeing battery life for hybrid trucks. *IEEE Transactions on Vehicular Technology*, 65(10), 7956–7971.
- Rizzoni, G., Guzzella, L., and Baumann, B.M. (1999). Unified modeling of hybrid electric vehicle drivetrains. *IEEE/ASME Transactions on Mechatronics*, 4(3), 246– 257.
- Serrao, L., Onori, S., and Rizzoni, G. (2009). Ecms as a realization of pontryagin's minimum principle for hev control. In *Proceedings of the American control* conference, 3964–3969.
- Stockar, S., Marano, V., Canova, M., Rizzoni, G., and Guzzella, L. (2011). Energy-optimal control of plugin hybrid electric vehicles for real-world driving cycles. *IEEE Transactions on Vehicular Technology*, 60(7), 2949–2962.
- Toshifumi Yamakawa, H.H. (2011). Motor drive control apparatus, vehicle with motor drive control apparatus, and motor drive control method.
- Zhang, P., Yan, F., and Du, C. (2015). A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics. *Renewable and Sustainable Energy Reviews*, 48, 88–104.