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Abstract
A number of full reference and reduced reference methods have been proposed in order to estimate the perceived visual

quality of 3D meshes. However, in most practical situations, there is a limited access to the information related to the

reference and the distortion type. For these reasons, the development of a no-reference mesh visual quality (MVQ)

approach is a critical issue, and more emphasis needs to be devoted to blind methods. In this work, we propose a no-

reference convolutional neural network (CNN) framework to estimate the perceived visual quality of 3D meshes. The

method is called SCNN-BMQA (3D visual saliency and CNN for blind mesh quality assessment). The main contribution is

the usage of a CNN and 3D visual saliency to estimate the perceived visual quality of distorted meshes. To do so, the CNN

architecture is fed by small patches selected carefully according to their level of saliency. First, the visual saliency of the

3D mesh is computed. Afterward, we render 2D projections from the 3D mesh and its corresponding 3D saliency map.

Then the obtained views are split into 2D small patches that pass through a saliency filter in order to select the most

relevant patches. Finally, a CNN is used for the feature learning and the quality score estimation. Extensive experiments

are conducted on four prominent MVQ assessment databases, including several tests to study the effect of the CNN

parameters, the effect of visual saliency and comparison with existing methods. Results show that the trained CNN

achieves good rates in terms of correlation with human judgment and outperforms the most effective state-of-the-art

methods.

Keywords Mesh visual quality assessment � Mean opinion score � Mesh visual saliency � Convolutional neural network

1 Introduction

Technological advances in computer graphics, telecom-

munication, and computer-aided design over the two past

decades have contributed to the development of three-

dimensional (3D) data. Thanks to the rapid development of

hardware and software for both professionals (3D modeling

tools) and users (graphic cards, smart-phones capable of

viewing 3D models), 3D data is widely used nowadays.

Indeed, several application fields are directly concerned by

this type of data such as architecture, cultural heritage (3D
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digitizing of the ancient statues), digital recreation (video

games, 3D movies), scientific visualization and so forth [1].

3D data (describing a human, animal or an object) can

be represented in different ways; however, in most appli-

cations, it is represented by polygonal meshes which model

the surface of objects by a set of vertices and faces. This

representation, particularly triangular meshes, is widely

used rather than other surface models such as implicit

surfaces or parametric surfaces.

In practical situations, several geometric operations can

be applied to 3D meshes such as compression [2, 3] to

reduce the size of large 3D data, watermarking [4, 5] to

protect the intellectual property of 3D content, simplifica-

tion [6, 7] to decrease the number of vertices, noise per-

turbation during the transmission process and so forth.

In all such scenarios, it is crucial to identify how much

the original model has been modified and assess the per-

ceived visual quality of distorted models.

Two types of evaluation can be conducted. The most

reliable evaluation process is the subjective visual quality

assessment. Each distorted mesh is given a quality score by

human observers in a controlled environment. Although

this evaluation is very reliable, it is a time-consuming

solution that is often too expensive to be adopted. The

second evaluation process is called objective visual quality

assessment. It relies on the computation of a quality metric

that tries to mimic an ideal human observer [8]. It is a good

solution to automatically assess the perceived visual qual-

ity of a distorted mesh. However, it must correlate well

with the subjective assessment process.

Many objective methods have been proposed in the

literature in order to estimate the perceived visual quality

of distorted meshes. The well-known root-mean-squared

error (RMS) [9] and the Hausdorff distance [10] are two

methods that use simple geometric distances to assess the

difference between two meshes. This type of methods is

based only on pure geometric distances, and it does not

take into consideration the perceptual information that

describes the main operations of the HVS. Consequently,

the predicted visual quality is not well reflected as proven

by the moderate correlation with human perception

[11, 12]. To overcome these drawbacks, many researchers

have recently developed perceptually driven quality

methods for 3D meshes [13, 14].

The remainder of this paper is organized as follows: We

present in Sect. 2 the related work on 3D mesh quality

assessment and the motivation behind our proposition. A

detailed description of the proposed method SCNN-BMQA

is given In Sect. 3. Section 4 is dedicated to the experi-

mental setup and the obtained results. Finally, we present

some concluding remarks and perspectives in Sect. 5.

2 Related work

Mesh visual quality (MVQ) objective methods can be

generally classified depending on the availability of the

reference: full-reference (FR), reduced-reference (RR) and

no-reference (NR).

FR-MVQ assessment methods require the original

model in order to compare it to the distorted version.

Several methods have been proposed in this context. Karni

and Gostman [15] proposed the Geometric Laplacian

method (GL) to estimate the visual quality of compressed

meshes. This method is based on a distance between the

original model and its distorted version as a measure of

smoothness of the vertices. For the quality estimation, this

method computes a weighted sum of the vertex Laplacian

coordinate error and the vertex root-mean-squared error. It

is proven that the Laplacian coordinates are suitable to

MVQ assessment since they are strongly related to the

surface normal. Following this argument, Sorkine

et al. [16] improved later this method by giving more

importance to the Laplacian values. In the improved

method, a greater weight is assigned to the Laplacian

coordinate error rather than the vertex root-mean-squared

error. Pan et al. [17] proposed another FR method for

MVQ assessment. In their method, they experimentally

studied the influence of many parameters as like the geo-

metric resolution and the resolution of texture. Bian

et al. [18] proposed a strain energy field-based measure

(SEF). It is based on the energy introduced by a specific

mesh deformation. The mesh is considered as an elastic

object, and the visual deformation is related to the level of

energy which causes the deformation. The perceptual dis-

tance is computed as the level of strain energy of the

normalized triangular faces. Based on the well-known

image quality metric, the SSIM (structural similarity) index

[19], Lavoué et al. [20] proposed a metric called the Mesh

Structural Distortion Measure (MSDM). In their method,

they extend the SSIM to 3D meshes by using the mesh

mean curvature as alternative for the pixel intensities in the

SSIM index. The limitation of this method is that it

assumes that the reference mesh and its distorted version

share the same connectivity, which is not always valid. To

overcome this issue, the author improves this method and

proposes MSDM2 [21]. Compared to MSDM, the

improved version MSDM2 can compare triangle meshes

with different connectivities, by a vertex correspondence

processing step. Another improvement is that a multiscale

approach is used to evaluate the visual difference which

leads to a considerable amelioration in predicting the per-

ceived visual quality. Torkhani et al. [22] proposed a

quality method called Tensor-based Perceptual Distance

Measure (TPDM). This method computes a distance
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between curvature tensors of the reference mesh and its

distorted version. The curvature amplitudes and the prin-

cipal curvature directions, which are obtained from the

tensor eigenvalues and eigenvectors respectively, are used

to compute a perceptually oriented tensor distance. FR-

MVQ assessment is mostly employed for guiding mesh

compression and watermarking. Although FR methods can

correctly estimate the perceived visual quality, they cannot

be used in most practical applications since the original

models are not always available.

To overcome the limitations of FR-MVQ assessment,

RR-MVQ is presented. This type of metrics requires only

partial information about the reference mesh (i.e., extracted

features and attributes). It is mostly used in many appli-

cation fields such as real-time visual information

communications.

In order to evaluate watermarking algorithms, Corsini

et al. [23] proposed two RR quality methods. In their work,

the authors suppose that the roughness of the 3D model is

related to the visual quality. The first method relies on

statistical parameters extracted from the dihedral angles to

measure the global roughness of the 3D surface. The sec-

ond method relies on a smoothing algorithm applied to a

reference mesh to estimate the difference between the

original model and the distorted version. The dihedral

angles are also used by Vasa and Rus [24]. This method

computes the difference between the original and the dis-

torted mesh using oriented dihedral angles extracted from

both meshes. In [25], Wang et al. proposed a RR method

called fast mesh perceptual distance (FMPD). This method

is based on the Gaussian curvature to extract a mesh local

roughness measure. The perceptual distance between the

reference mesh and the distorted version is defined as the

difference between the normalized surface integrals of the

local roughness measure. However, we still face the same

issue that with FR methods. Indeed, when using RR

methods, we need to extract features from the original

models. This is not suitable for a lot of real-world appli-

cations. Another issue is that the extracted RR features

need to be transmitted or embedded in the distorted images.

This introduces an additional burden for quality

assessment.

NR-MVQ seems to be a good solution to overcome the

limitation of FR and RR approaches. This type of metrics

relies only on the distorted mesh, and the quality estimation

can be performed without knowing the reference. For this

reason, NR-MVQ assessment methods are more appealing

in practical situations, and the development of such

methods becomes crucial to remedy this limitation.

Abouelaziz et al. [26, 27] proposed two NR methods based

on extracted features from the distorted meshes used to

feed machine learning techniques. The first method con-

siders the dihedral angles as a structural information

descriptor. The feature distribution is fitted using statistical

models in order to learn the support vector regression

(SVR) for the quality prediction. The second method is

based on the mean curvature features and uses the general

regression neural network (GRNN) for the feature learning

step. Nouri et al. [28] proposed a NR method called 3D

blind mesh quality assessment index (BMQI). This method

uses the SVR to learn the visual saliency and roughness

features extracted from distorted meshes. Unlike for MVQ,

several blind methods have been proposed to evaluate the

visual quality of images, and they successfully estimate the

perceived quality in terms of the correlation with subjective

scores [29–31].

Convolutional neural networks (CNN) have recently

attracted the attention of many researchers. They have been

successfully employed in various computer vision appli-

cations allowing to reach high performances [32]. One of

their main advantage over classical neural networks is that

they adequately consider the spatial structure of the input

data. Moreover, CNN allows the important property of

weights sharing between the convolutional layers which

restrict the number of parameters to learn. Their use in

blind image quality assessment (BIQA) has shown

notable improvement in terms of the correlation with the

human judgment [33]. However, it has not yet been

exploited for MVQ assessment. Indeed, studies in mesh

quality assessment tend more to adopt FR and RR

approaches, since they usually perform better than blind

methods.

Building on these works, we propose a novel NR-MVQ

assessment method called SCNN-BMQA (3D visual sal-

iency and CNN for blind mesh quality assessment). It relies

on the assumption that the human visual system (HVS) is

more sensitive to distortions in salient regions, whereas in

non-salient regions their influence on the overall judgment

can be neglected. In this context, mesh visual saliency is

used to indicate the most relevant regions of the 3D mesh.

These regions are presented in the form of 2D small pat-

ches which are used to feed a CNN to learn an effective

representation and estimate the perceived visual quality.

SCNN-BMQA exploits the sensitivity of the HVS to mesh

degradation together with the efficiency of the CNN

learning approach. The proposed method is the first one

that is able to outperform FR and RR approaches. Addi-

tionally, it proves to be significantly better than the alter-

native blind methods.

3 Proposed method

In this section, we describe the proposed MVQ assessment

method in detail. SCNN-BMQA relies on the hypothesis

that the HVS is more sensitive to degradation in salient
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regions and that more importance must be given to these

regions in the overall perceived visual quality. Conse-

quently, mesh saliency is used to determine the most rel-

evant patches from specific views of the 3D mesh. Instead

of using handcrafted features, our method aims to acquire

an effective mesh representation from raw images repre-

senting 2D projections of the 3D shape. SCNN-BMQA

consists of three modules: mesh rendering, saliency-based

patch selection, and feature learning to estimate a single

objective quality score. Mesh rendering allows to obtain

2D projections in order to represent the 3D mesh from

multiple views. The views are then split into small patches,

and a saliency-based technique is further used to select the

most relevant patches. Feature learning is implemented by

a convolutional neural network, and a quality score is

finally obtained using a regression method.

3.1 Flowchart

The flowchart of SCNN-BMQA is depicted in Fig. 1.

Given a distorted 3D mesh, we first compute the level of

saliency for each vertex to obtain a 3D saliency map. Then,

we render 2D projections (views) from the 3D object and

its corresponding 3D saliency map. The obtained projec-

tions are split into small patches of size 32� 32. The sal-

iency of each patch is used as a selection criterion as

follows: All the patches with a level of saliency superior to

a fixed threshold are considered as relevant patches,

whereas the other patches are neglected. The selected

patches are then used as input for the network after a

normalization. We use a CNN with a regression method to

estimate the objective score for each selected patch. The

final quality score for the 3D object is obtained by aver-

aging the scores.

3.2 Mesh views rendering

The first step of SCNN-BMQA consists of rendering 2D

projections to represent the 3D mesh from multiple views.

To do so, virtual cameras are fixed at different angles

around the 3D mesh according to the axes X and Y. As

illustrated in Fig. 2, the centroid of the 3D object is placed

at the origin of the coordinate system. The coordinates

ðxi; yiÞ of the virtual cameras are obtained by varying the

angles x 2 ½0; 2p� and y 2 ½0; 2p� by p
6
(30 degrees). Twelve

angles are obtained for each axis. Hence, for each combi-

nation of xi and yi a virtual camera is placed and a 2D

projection is obtained. In total, 144 projections are obtained

from each 3D mesh.

3.3 Saliency-based patch selection

Our attention is generally attracted by salient visual stim-

uli. It is important for complex biological systems to

quickly detect the most relevant regions in a given field of

view. Visual saliency is a subjective phenomena that makes

a region remarkable compared to others and immediately

attracts our attention. The HVS has evolved to automati-

cally detect salient regions. Visual saliency has been used

previously for MVQ assessment. Anass et al. [28] pro-

posed a blind mesh quality assessment index (BMQI) based

on the estimation of visual saliency and roughness. In their

work, they suppose that the quality of a 3D mesh is more

affected in salient regions. The same authors proposed a

full reference method [34] using a multiscale visual sal-

iency map to compare the structural information between

an original mesh and a distorted version. The relationship

between visual saliency and distortion perception has been

studied in [35]. It is claimed that the annoyance of the

distortions depends strongly on the saliency of the regions

that they appear in.

Mesh views  
rendering 

Mesh 
patches 

Saliency 
patches 

Patch 
selection 

Relevant 
patches 

Offline phase  

Online phase  

Training 
dataset  

Test  
dataset 

Trained  
model 

Quality  
score 

MVQ 
Dataset 

Learning data preparation 

3D Saliency  
map 

Distorted  
mesh 

Fig. 1 Flowchart of the proposed saliency and CNN-based blind mesh quality assessment method : SCNN-BMQA

Neural Computing and Applications

123

Author's personal copy



Following this principle, we make the assumption that

the subjective evaluation of the visual quality of a distorted

mesh is strongly related to the distortion applied to salient

regions. In other words, the human visual perception is

impacted by the modification in salient regions since the

visual attention is attracted automatically to these loca-

tions. In our work, we use mesh saliency to detect the

salient patches from specific views of the 3D mesh. In

order to compute the saliency map of 3D meshes and thus

to detect perceptually important regions on mesh surfaces,

we use the method proposed in [36]. This method is

inspired by low-level HVS operations, and it is based on

the center-surround mechanism adopted by the well-known

Itti et al.’s method [37]. The process of computing mesh

saliency is as follows: First, the mean curvature is com-

puted at mesh vertices. The mean curvature is then filtered

with a fine and coarse Gaussian. After that, the saliency is

computed as the difference between the filtered mean

curvatures within different scales by varying the Gaus-

sian’s standard deviation. The final saliency map is

obtained by a nonlinear normalization sum of all the

multiscale saliency maps. Figure 3 shows some examples

of 3D meshes and their saliency maps. We can notice that

some regions in the 3D shape are considerably more dis-

tinct and hence judged as salient. It is remarkable that

regions with high curvature levels such as ears, nose, eyes,

and paws attract more attention compared to smooth

regions where the level of curvature is low.

It is noteworthy that in our work we do not propose a

saliency method; we are decided to use an existing one.

This method was evaluated by the authors, and the

obtained results validate its good performance in capturing

the salient regions. Our purpose in using visual saliency is

to demonstrate its importance and usefulness in quality

assessment and show how the salient regions are more

susceptible to degradations that are easily detected by the

human eye compared to the non-salient regions. Once the

saliency map is obtained, we render 2D views following

the same procedure described in the last section. The views

obtained from the saliency map are used to select the

salient locations in the corresponding 3D mesh as follows:

• First, we sample non-overlapping patches of size 32�
32 from the 2D projections of the 3D mesh and its

corresponding saliency map.

• For each patch of the saliency map, we compute the

local level of saliency (LoS) which corresponds here to

its average saliency value. The level of saliency LoS is

used afterward to select the most relevant patches with

a saliency threshold St set experimentally to 0.4 (more

details can be found in Sect. 4.4). All the patches with

LoS� St are considered as relevant regions, whereas

patches with LoS\St are neglected. We note that the

LoS is computed using only the pixels that contain the

saliency information, the background pixels at object

boundary are not considered. Thus, informative patches

(with high saliency) at object boundary are not ignored.

• After that, we perform a local normalization on the

retrieved patches which correspond to the salient

regions in the 3D mesh.

• Finally, the selected patches are then used as input to

our CNN model.

3.4 Feature Learning and quality score
estimation

After the relevant patches are selected, the next step is to

use machine learning to estimate the quality score. For that,

a CNN model is used.

3.4.1 Input normalization

Before the training process, a simple local contrast nor-

malization is applied on the input patches. The normalized

value Îði; jÞ of a pixel I(i, j) at location (i, j) is computed as

follows:

Îði; jÞ ¼ Iði; jÞ � lði; jÞ
rði; jÞ þ c

ð1Þ

y

x

Virtual  
camera 

3D shape 

2D projection 

Fig. 2 Mesh views rendering, a virtual camera is placed for each

combination of x and y. One hundred forty-four projections are

obtained for each 3D mesh
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lði; jÞ ¼ 1

ð2M þ 1Þ � ð2N þ 1Þ
Xm¼M

m¼�M

Xn¼N

n¼�N

Iðiþ m; jþ nÞ

ð2Þ

rði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm¼M

m¼�M

Xn¼N

n¼�N

ðIðiþ m; jþ nÞ � lðm; nÞÞ2
vuut ð3Þ

where c is a constant that prevents instabilities from

dividing by zero. M and N are the normalization window

sizes. The used normalization is very important to decrease

the influence of the saturation problem. It is a type of

distortion where the image is limited to some maximum

values [38]. In addition, the normalization makes the net-

work robust to illumination and contrast variation.

3.4.2 Network architecture

The next step consists in using a CNN in order to estimate

the perceived visual quality. The CNN is fed by the nor-

malized patches of size 32� 32. Figure 4 shows the dif-

ferent layers of the used CNN.

Note that several network configurations have been

tested in order to choose the best architecture for our

method. The elaborated architecture in this section is the

one that led to the best results (more details in Sect. 4.2).

The first layer is a convolutional layer; it filters the input

patch with 32 kernels of size ð5� 5Þ. The convolution

process is defined as follows:

Yi ¼ Wi � X þ bi; i ¼ 1; 2; . . .;N ð4Þ

where X is the input patch of the CNN and � is the con-

volution operation. fWigNi¼1 denotes the convolutional

kernels and fbigNi¼1 are the biases values. Thirty-two fea-

ture maps (28� 28) are generated by this layer.

The second layer in our network is a max-pooling layer.

It applies the max-pooling operation on the feature maps

generated by the previous layer in order to reduce the

dimension of the filter responses. The max-pooling opera-

tion is defined as follows:

Mn
x;y ¼ max

ðx;yÞ2X
ðYn

x;yÞ ð5Þ

where Mn
x;y denotes the output of the max-pooling layer

(maximum values). n ¼ 1; 2; . . .;N where N is the number

of filters. X is a local window used in the pooling opera-

tion. In this layer, we use a local window of size 2� 2 with

a stride equals to 2. This provides 32 feature maps

(14� 14).

Another convolutional layer is introduced with 32 ker-

nels (5� 5). This layer provides 32 maps of size 10� 10.

It filters the feature maps obtained from the previous layer

using the same process in Eq. 4.

After the second convolutional layer, we introduce

another max-pooling layer of size 10� 10. The size of the

local window, in this case, is the same size of the maps

produced by the previous layer; in other words, each fea-

ture map will be reduced to a single value and its output is

thus a vector of size 1� 32.

In order to estimate the perceived quality scores of a

given distorted 3D model, the obtained feature vectors are

then used to feed two fully connected layers with 500

neurons each. In our work, we adopt the nonlinear acti-

vation function ReLU (Rectified Linear Units) [39].

For the training process, we use the objective function

adopted in [38] defined as follows:

L ¼ 1

N

XN

n¼1

jjSðpn;xÞ �MOSnjjl1

x̂ ¼min
x

L

ð6Þ

where MOSn is the subjective score assigned to a given

input patch pn and Sðpn;xÞ is the estimated objective score

of pn with network weights x. The Stochastic Gradient

Fig. 3 Examples of mesh

saliency: a 3D models, b their

corresponding saliency maps

and c is the colormap. The

yellow color presents the most

salient regions and the blue

color presents the no salient

regions
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Descent (SGD) and back propagation are used to learn the

parameters of the CNN by minimizing the objective

function defined in Eq. 6. We note that we perform SGD

for 40 epochs in our experiments.

The leave-one-out cross-validation is used for the

training process as follows: First, we build a training model

as an offline phase using the patches from all the existing

distorted objects in the repository except one group of

distorted meshes (one object and its distorted versions).

Then, the patches from the excluded object are used for the

test (online phase) using the constructed model.

In the training, each patch is labeled by a quality score

the same as the ground truth score of the source mesh as

used in image quality assessment in [40]. Although some

distortions are non-uniform in the tested databases, we can

consider the same scores on all the salient patches since

they tend to have the global MOS according to the

assumption that the HVS is more sensitive to distortions in

salient regions.

In order to study the effect of the CNN layers and

parameters, several configurations are tested (see results in

the next section).

4 Experiments

In this section, we evaluate the performance of SCNN-

BMQA and the effectiveness of the CNN architecture for

mesh visual quality assessment. We begin by describing

the validation protocol and the used databases, i.e., the

LIRIS/EPFL general-purpose database, the LIRIS masking

database, the UWB compression database, and the IEETA

simplification database. Then, we examine how the CNN

parameters affect the performance of the network. After

that, we investigate the importance of including the visual

saliency-based patch selection technique in our method and

how the performance of the CNN is affected. Finally, we

present the experimental results and comparative analysis

on mesh visual quality assessment state of the art.

4.1 Protocol

Objective MVQ methods goal is to provide quality scores

that correlate well with human judgments. The perfor-

mance of SCNN-BMQA is tested using four databases

specially designed for MVQ assessment evaluation. Each

database contains reference models and a variety of dis-

torted versions. Depending on the level of distortion, a

MOS value is assigned for each distorted mesh by a careful

subjective evaluation. Figure 5 shows examples of the

reference meshes from the four used databases that are

defined as follows:

• LIRIS/EPFL general-purpose database [20]: Comprises

88 models including four references and 84 distorted

versions (21 distortions for each reference model

obtained by applying smoothing or noise addition

either locally or globally). Twelve human observers

participated in the subjective evaluation by giving a

quality score between 0 (good quality) and 10 (bad

quality). The MOS is obtained for each distorted model

by averaging the twelve scores.

• LIRIS Masking database [41]: Comprises 28 models

including four reference and 24 distorted versions (six

distortions for each reference model obtained by

applying only the local noise addition with different

levels). This database is designed to capture the visual

masking effect. Eleven human observers participated in

the subjective evaluation and provide a quality score

between 0 (bad quality) and 4 (good quality) for each

distortion.

Input Convolution 1 Max-pooling 1 Convolution 2 Max-pooling 2
Fully

connected Output

Quality 
score

Fig. 4 Convolutional neural network configuration of the proposed method
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• UWB compression database [24]: Contains 68 models

(five references and 63 distorted versions). The distor-

tions are obtained by applying 13 levels of compression

distortions. A quality score between 0 (bad quality) and

1 (good quality) is provided for each distortion.

• The IEETA simplification database [42]: This database

contains five reference models and 30 simplified

versions (six distorted versions for each reference).

The simplified models were obtained using three

simplification algorithms with two different vertex

reduction ratios.

It is noteworthy that the available databases for

MVQ contain a limited amount of data; the largest

database (the general-purpose database) includes only

88 models while training a CNN requires a huge

amount of data. However, the decomposition of meshes

as views and then patches allows us to obtained a

sufficient set to train our model. For example, to

evaluate the visual quality of the distorted versions of

Dinosaur model on the general-purpose database, we

use Armadillo, Venus and Rocker models , and their 21

deformed versions to build the training model in the

offline phase. Then, the group of Dinosaur model and

its 21 deformed versions are used for the test.

During the training, each distorted model provides

around 13,787 training samples (patches). Talking

about the last example, 3� 21 models are used for

the training, in total 3� 21� 13;787 samples which

represent 75% of the database versus 1� 21� 13;787

for the test (25%).

To test the performance of quality metrics, it is common to

compute the correlation between the subjective scores

provided in the database and the objective scores obtained

by the MVQ method. To do so, two correlation coefficients

are used:

• The Pearson linear correlation coefficient (rp) defined

as follows:

rp ¼
Pn

i¼1ðQsi � �QsÞðMOSi � �MOSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðQsi � �QsÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðMOSi � �MOSÞ2

q

ð7Þ

where Qsi denotes the objective scores obtained by

SCNN-BMQA. MOSi is the subjective scores, and n is

the number of distortions in the database.

• The Spearman rank-order correlation coefficient (rs)

defined as follows:

rs ¼ 1�
Pn

i¼1ðrankðMOSiÞ � rankðQsiÞÞ2

nðn2 � 1Þ
ð8Þ

The Pearson correlation coefficient rp measures the linear

dependence between the objective and subjective scores

and is generally considered a more effective, and more

important index than the Spearman coefficient rs. It com-

pares the actual score values by measuring the linear

dependence between the objective and subjective scores. rs
measures how well the relationship between the objective

and subjective scores can be described by a monotonic

function [43]: As the value of the subjective scores

increases, so does the value of the objective scores. Only

the ranks of the scores are used in the computation of the

rs, not the actual score values.

4.2 CNN configuration

The CNN involves several parameters and provides an

important degree of freedom to design an effective archi-

tecture for a specific application. In this work, several

network architectures have been tested in order to inves-

tigate how the performance is affected by these parameters

and choose the best configuration for our method. To do so,

we first fix the patch size ð32� 32Þ and the kernel size

ð5� 5Þ while testing the network with a different number

of convolutional kernels. After that, we adjust the kernel

size while fixing the number of kernels and the patch size.

Finally, we examine the performance of the network by

varying the patch size while fixing the number and the size

of kernels to the best configuration obtained.

Fig. 5 The reference models from: the LIRIS masking database (a),
the general-purpose database (b), the UWB compression database

(c) and the IEETA simplification database (d)
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4.2.1 Effect of the number of filters in the convolutional
layers

As the convolutional layer is the core building of a CNN.

The number of convolutional adopted for this layer could

also have an influence on the performance of the network.

To demonstrate the influence of this parameter, we test the

ability of our network in predicting the visual quality by

using a variety of convolution kernels while fixing the

other parameters. Table 1 presents the performance of the

network regarding the correlation coefficients with respect

to the size of convolution kernels.

It is shown from Table 1 that the number of kernels

significantly affects the performance of the network. Using

32 kernels instead of 10 leads to an important improve-

ment; however, using more kernels than 32 decreases the

performance of the network in predicting the visual quality.

4.2.2 Effect of the size of filters

Another parameter tested in our experiments is the size of

the convolution kernels. To do so, we fix the input patch

size and the number of convolution kernels while testing

different sizes of the kernels. Table 2 presents the perfor-

mance of the network regarding the correlation coefficients

with respect to the number of convolution kernels.

The kernel size also affects the performance of the

network as shown in Table 2. Using a greater window size

than 7� 7 leads to lower correlations; however, the net-

work is not strongly sensitive to the kernel size when using

3� 3, 5� 5 and 7� 7 especially regarding the SROCC

correlation.

4.2.3 Effect of the size of input data (patches)

As mentioned earlier, the proposed CNN is fed by small

patches. Since these latter are sampled in a non-overlap-

ping way, the size affects the number of patches obtained

per views (i.e., smaller size leads to a larger number of

patches). In this experiment, we examine how the input

size affects the performance of our CNN in predicting the

perceived visual quality. Table 3 presents the performance

of the network regarding the correlation coefficients with

respect to the input patch size variation.

As we can see from Table 3, the performance of the

network is sensitive to the size of the input patch. The best

correlations are provided when using input patches with

size 32� 32. Otherwise, using patches with size 128� 128

provides the lowest results since the number of patches

decreases strongly and thus the learning dataset becomes

smaller.

According to these experiments, we adopt the CNN

configuration that leads to the best correlation scores

(rs ¼ 93:3% and rp ¼ 92:2%):

• Input: (32� 32)

• Conv1–32 (5� 5)

• Max-pool1 (2� 2)

• Conv2–32 (5� 5)

• Max-pool2 (10� 10)

• FC-500

4.3 Effect of the number of views

The 3D mesh is represented by different views obtained by

fixing virtual cameras at different angles. The number of

views is inversely proportional to the rotation angle of the

virtual camera, i.e., smaller angle provides more views. In

this experiment, we test how the number of input views

affects the performance of our method. Table 4 presents

the performance of our method on the general-purpose

database using a different number of views.

It is shown in Table 4 that the best performance is

obtained using the angle p
6
. Smaller angle (i.e., p

12
) provides

576 views; although this number seems representative,

many views may have the same information. Greater angle

(i.e., p
4
) provides 64 views, which is not enough to represent

the 3D shape since a lot of information is missed.

4.4 Effect of the saliency-based patch selection

As mentioned earlier, SCNN-BMQA relies on the

assumption that the subjective evaluation of the visual

quality of a distorted mesh is strongly related to the

Table 1 Performance of the

network with respect to the

number of kernels

Network configuration Input: ð32� 32Þ Input: ð32� 32Þ Input: ð32� 32Þ
Conv1–10 ð5� 5Þ Conv1–32 ð5� 5Þ Conv1–50 ð5� 5Þ
Max-pool1 ð2� 2Þ Max-pool1 ð2� 2Þ Max-pool1 ð2� 2Þ
Conv2–10 ð5� 5Þ Conv2–32 ð5� 5Þ Conv2–50 ð5� 5Þ
Max-pool2 ð10� 10Þ Max-pool2 ð10� 10Þ Max-pool2 ð10� 10Þ
FC-500 FC-500 FC-500

rs 88.6 93.3 92.4

rp 89.7 92.2 91.2

The best correlations are highlighted in bold
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distortion applied to salient regions. To demonstrate this,

we use a patch selection approach based on mesh visual

saliency and only the salient patches are used to feed our

CNN. The salient patches are selected by fixing a saliency

threshold St. To do so, several thresholds are tested on the

general-purpose database. We choose to conduct the

experiments in this database because it contains the greater

number of deformations per object. As shown in Table 5,

the performance of SCNN-BMQA is sensitive to the sal-

iency threshold. Starting from St ¼ 0:1, the use of a greater

threshold leads to a better performance until St ¼ 0:4 that

provides the best performance. However, the performance

decreases when the threshold value exceeds 0.4. We note

that this value is fixed in our experiments as constant for all

the other databases.

We also compare the performance of SCNN-BMQA

with and without using the patch selection approach.

Table 6 presents the correlation coefficients rsð%Þ and

rpð%Þ of SCNN-BMQA with and without the patch

selection on the four used databases. We note that the given

correlation scores are for the whole repository.

It is shown in Table 6 that the patch selection process

improves significantly the correlations scores. Especially

on the masking database where the Spearman coefficient

increases by 4:1% and the Pearson coefficients increases by

3:5%, and on the general-purpose database where rs and rp
coefficients increase by 3:3% and 0:9%, respectively. On

the UWB compression and simplification databases, the

performance is slightly improved except for the Pearson

correlation on the compression database which is decreased

by 0:1%. Therefore, the used patch selection strategy based

on visual saliency is very effective, especially on the LIRIS

masking and the general-purpose database.

Table 2 Performance of the network with respect to the size of convolutional kernels

Network configuration Input: ð32� 32Þ Input: ð32� 32Þ Input: ð32� 32Þ Input: ð32� 32Þ
Conv1–32 ð3� 3Þ Conv1–32 ð5� 5Þ Conv1–32 ð7� 7Þ Conv1–32 ð9� 9Þ
Max-pool1 ð2� 2Þ Max-pool1 ð2� 2Þ Max-pool1 ð2� 2Þ Max-pool1 ð2� 2Þ
Conv2–32 ð3� 3Þ Conv2–32 ð5� 5Þ Conv2–32 ð7� 7Þ Conv2–32 ð9� 9Þ
Max-pool2 ð13� 13Þ Max-pool2 ð10� 10Þ Max-pool2 ð7� 7Þ Max-pool2 ð4� 4Þ
FC-500 FC-500 FC-500 FC-500

rs 93.0 93.3 93.2 89.4

rp 92.4 92.2 90.4 88.9

The best correlations are highlighted in bold

Table 3 Performance of the network with respect to the input patch size variation

Network configuration Input: ð16� 16Þ Input: ð32� 32Þ Input: ð64� 64Þ Input: ð128� 128Þ
Conv1–32 ð5� 5Þ Conv1–32 ð5� 5Þ Conv1–32 ð5� 5Þ Conv1–32 ð5� 5Þ
Max-pool1 ð2� 2Þ Max-pool1 ð2� 2Þ Max-pool1 ð2� 2Þ Max-pool1 ð2� 2Þ
Conv2–32 ð5� 5Þ Conv2–32 ð5� 5Þ Conv2–32 ð5� 5Þ Conv2–32 ð5� 5Þ
Max-pool2 ð2� 2Þ Max-pool2 ð10� 10Þ Max-pool2 ð26� 26Þ Max-pool2 ð58� 58Þ
FC-500 FC-500 FC-500 FC-500

rs 92.7 93.3 92.7 89.3

rp 90.3 92.2 91.8 86.8

The best correlations are highlighted in bold

Table 4 Correlation coefficients

rs (%) and rp (%) of SCNN-

BMQA using different number

of views on the general-purpose

database

Number of views (Rotation angle) 576 ( p
12
) 144 (p

6
) 64 (p

4
)

rs rp rs rp rs rp

Correlation score 90.6 90.1 93.3 92.4 88.6 87.3

Table 5 Correlation coefficients rs (%) and rp using different saliency

threshold St values on the LIRIS/EPFL general-purpose database

Threshold St 0.1 0.2 0.4 0.6 0.8 0.9

rs 89.9 90.8 93.3 92.8 88.5 80.5

rs 91.5 92.1 92.2 90.6 86.3 80.2

The best correlations are highlighted in bold
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4.5 Evaluation and comparison with the state
of the art

In order to evaluate the performance of our method, a

comparative analysis is conducted. SCNN-BMQA is

compared to the state of the art including FR, RR and NR

methods:

• Full reference methods: HD [10], RMS [9], MSDM2

[25], TPDM [26].

• Reduced reference methods: 3DWPM1 [27], 3DWPM2

[27], FMPD [25], DAME [28].

• No reference methods: NR-SVR [30], NR-GRNN [31],

BMQI [36].

The correlation coefficients values rs and rp on the LIRIS

masking, LIRIS/EPFL general-purpose, UWB compression

and the IEETA simplification databases are listed, respec-

tively, in Tables 7, 8, 9 and 10.

As shown in Tables 7, 8, 9 and 10, the geometric

measures HD and RMS perform the worst. One reason is

that these methods do not include the main operations of

the HVS and the visual quality is computed by a simple

geometric distance. For the other FR measures, MSDM2

and TPDM incorporate the perceptual information, repre-

sented in the mesh curvature. As such, the perceptual

information is included and better prediction is achieved

compared to the geometric measures as proven by the high

correlation coefficients.

The RR method FMPD also provide good correlations

compared to MSDM2 and TPDM. This method (FMPD)

includes a roughness measure which is an important feature

in mesh processing.

SCNN-BMQA shows excellent performance on all the

available subjectively-rated MVQ databases, as proven by

its high scores on the individual models as well as on the

whole repositories. On the LIRIS masking database,

SCNN-BMQA provides the highest Spearman and Pearson

correlation coefficients on the whole corpus (rs ¼ 95:5%

and rp ¼ 94:3%) and overcome the NR methods (BMQI,

NR-SVR, and NR-GRNN) as well as the most effective FR

and RR methods.

The general-purpose database is the largest MVQ data-

base; so far, it comprises the highest number of distorted

meshes among all the other databases. That is, 84 distorted

meshes and a variety of distortion types. On this database,

SCNN-BMQA shows a good performance and provides the

highest correlation coefficients (rs ¼ 93:3% and

rp ¼ 92:4%) that contend all the compared methods. The

high correlation scores obtained by SCNN-BMQA in the

Table 6 Correlation coefficients rs (%) and rp (%) of SCNN-BMQA with and without the patch selection strategy on the four tested databases

Masking database General-purpose database Compression database Simplification database

rs rp rs rp rs rp rs rp

Without patch selection 91.4 90.8 90.0 92.0 90.1 88.3 90.4 90.2

With patch selection 95.5 94.3 93.3 92.4 90.4 88.2 90.4 90.5

Table 7 Correlation coefficients rs (%) and rp (%) of different objective metrics on the LIRIS masking database

Type Metric Armadillo Lion Bimba Dyno All models

rs rp rs rp rs rp rs rp rs rp

Full reference HD [10] 48.6 37.7 71.4 25.1 25.7 7.5 48.6 31.1 26.6 4.1

RMS [9] 65.6 44.6 71.4 23.8 71.4 21.8 71.4 50.3 48.8 17.0

MSDM2 [25] 81.1 88.6 93.5 94.3 96.8 100 95.6 100 87.3 89.6

TPDM [26] 91.4 88.6 88.4 82.9 97.1 100 71.1 100 88.6 90.0

Reduced reference 3DWPM1 [27] 58.0 41.8 20.0 9.7 20.0 8.4 66.7 45.3 29.4 10.2

3DWPM2 [27] 48.6 37.9 38.3 22.0 37.1 14.4 71.4 50.1 37.4 18.2

FMPD [25] 94.2 88.6 93.5 94.3 98.9 100 96.9 94.3 80.8 80.2

DAME [28] 96.0 94.3 99.5 100 88.0 97.7 89.4 82.9 58.6 68.1

No-reference NR-SVR [30] 89.5 84.7 100 96.3 94.2 93.6 94.4 89.7 90.4 91.2

NR-GRNN [31] 82.3 80.5 94.1 97.0 90.2 94.3 78.2 82.3 90.2 82.4

BMQI [36] 94.3 NA 94.3 NA 100 NA 83.0 NA 92.9 NA

SCNN-BMQA 92.4 91.7 92.2 93.1 97.9 97.3 93.4 92.6 95.5 94.3

The best correlations for each evaluation type (no-reference, reduced reference and no reference) are highlighted in bold
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general-purpose database prove its strength in MVQ

assessment task.

On the UWB compression database, SCNN-BMQA

performs the best in terms of PLCC score (rp ¼ 88:2%)

overcoming the most effective methods. In addition, it

provides competitive SROCC scores on the whole reposi-

tory (rs ¼ 90:4%) against rs ¼ 91:5% for TPDM and rs ¼
93:5% for the RR method DAME. We note that the

methods NR-SVR, NR-GRNN and BMQI are not evalu-

ated on this database.

On the IEETA simplification database, SCNN-BMQA

provides the highest correlation coefficients (rs ¼ 90:4%
and rp ¼ 90:5%). The perceptual methods MSDM2, TPDM

and FMPD also perform well in this database. The results

of 3DWPM1, 3DWPM2 and DAME are missing because

these metrics have mesh connectivity constraint and they

cannot be applied to compare two meshes with different

connectivities. The results of NR-SVR, NR-GRNN and

BMQI are also missing since these methods are not eval-

uated on the IEETA simplification database.

4.6 Psychometric curve fitting

Since the objective scores obtained by an MVQ method

and the corresponding subjective scores are nonlinear, it is

important to introduce a psychometric fitting function to

partially remove the nonlinearity and make the correlation

values interpretable by users. In our work, we use the

cumulative Gaussian psychometric function [44] adopted

by [22, 25] defined as follows:

pða; b;XÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z /

aþbX

exp� t2

2

� �
dt ð9Þ

Table 8 Correlation coefficients rs (%) and rp (%) of different objective metrics on the LIRIS/EPFL general-purpose database

Type Metric Armadillo Dyno Venus Rocker All models

rs rp rs rp rs rp rs rp rs rp

Full reference HD [10] 69.5 30.2 30.9 22.6 1.6 0.8 18.1 5.5 13.8 1.3

RMS [9] 62.7 32.3 0.3 0.0 90.1 77.3 7.3 3.0 26.8 7.9

MSDM2 [25] 81.6 85.3 85.9 85.7 89.3 87.5 89.6 87.2 80.4 81.4

TPDM [26] 84.5 78.8 92.2 89.0 90.6 91.0 92.2 91.4 89.6 89.2

Reduced reference 3DWPM1 [27] 65.8 35.7 62.7 35.7 71.6 46.6 87.5 53.2 69.3 38.4

3DWPM2 [27] 74.1 43.1 52.4 19.9 34.8 16.4 37.8 29.9 49.0 24.6

FMPD [25] 75.4 83.2 89.6 88.9 87.5 83.9 88.8 84.7 81.9 83.5

DAME [28] 60.3 76.3 92.8 88.9 91.0 83.9 85.0 80.1 76.6 75.2

No-reference NR-SVR [30] 76.8 91.5 78.6 84.1 85.7 88.6 86.2 86.6 81.5 87.8

NR-GRNN [31] 87.1 97.3 91.2 94.1 86.3 85.0 78.6 74.8 86.2 88.7

BMQI [36] 20.1 NA 83.5 NA 88.9 NA 92.7 NA 78.1 NA

SCNN-BMQA 89.8 91.4 91.6 92.2 94.6 93.8 91.9 93.9 93.3 92.4

The best correlations for each evaluation type (no-reference, reduced reference and no reference) are highlighted in bold

Table 9 Correlation coefficients rs (%) and rp (%) of different objective metrics on the UWB compression database

Type Metric Bunny James Jessy Nissan Helix All models

rs rp rs rp rs rp rs rp rs rp rs rp

Full reference HD [10] 34.1 52.2 - 16.8 6.8 - 23.6 12.5 14.4 23.6 45.1 46.4 10.6 28.3

RMS [9] 34.2 20.9 14.0 10.8 0.0 14.8 17.8 29.7 46.9 44.6 22.0 24.1

MSDM2 [25] 97.4 90.1 82.6 69.2 84.3 63.1 84.4 73.1 98.1 94.7 89.3 78.0

TPDM [26] 95.1 96.5 90.8 73.6 85.8 75.8 82.7 73.4 98.7 95.0 91.5 82.9

Reduced reference 3DWPM1 [27] 94.7 93.4 77.3 72.3 87.2 89.5 63.6 59.3 98.0 95.2 84.1 81.9

3DWPM2 [27] 96.0 91.2 76.9 65.3 86.9 85.9 56.3 67.6 95.5 94.3 82.3 80.9

FMPD [25] 94.2 89.6 95.3 91.2 63.3 60.0 92.4 77.5 98.4 90.8 88.8 81.8

DAME [28] 96.8 93.4 95.7 93.4 84.4 70.5 93.9 75.3 96.6 95.2 93.5 85.6

No-reference SCNN-BMQA 95.8 91.7 96.2 95.6 92.3 90.5 88.7 84.7 96.7 94.6 90.4 88.2

The best correlations for each evaluation type (no-reference, reduced reference and no reference) are highlighted in bold
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where X is the quality score obtained by the objective

method, a and b are two parameters to be determined. The

values of a and b are retrieved using the MOS values and

the objective values obtained by SCNN-BMQA for each

database. Figure 6 shows the scatter plots of the predicted

scores obtained by SCNN-BMQA and the subjective

MOSs. As illustrated by this figure, the subjective vs

objective scores point cloud is close enough to the psy-

chometric curve with regard to the four tested databases.

The good fitting of these plots is another indicator of the

good performance of SCNN-BMQA.

Table 10 Correlation coefficients rs (%) and rp (%) of different objective metrics on the IEETA simplification database

Type Metric Bones Bunny Head Lung Strange All models

rs rp rs rp rs rp rs rp rs rp rs rp

Full reference HD [10] 92.0 94.3 37.8 39.5 72.8 88.6 80.6 88.6 52.3 37.1 50.5 49.4

RMS [9] 86.4 94.3 94.5 77.1 49.6 42.9 89.0 100 90.4 88.6 59.6 70.2

MSDM2 [25] 98.3 94.3 98.1 77.1 88.9 88.6 92.3 60.0 99.0 94.3 89.2 86.7

TPDM [26] 99.0 94.3 98.0 94.3 63.1 65.7 98.6 94.3 98.7 94.3 86.9 88.2

Reduced reference FMPD [25] 96.0 88.6 98.0 94.3 70.4 65.7 95.5 88.6 96.0 65.7 89.3 87.2

No-reference SCNN-BMQA 96.8 93.7 96.7 90.9 96.4 93.6 94.3 89.6 95.4 93.5 90.4 90.5

The best correlations for each evaluation type (no-reference, reduced reference and no reference) are highlighted in bold
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Fig. 6 Scatter plots of the mean opinion scores (MOS) versus the objective scores obtained from SCNN-BMQA. a LIRIS/EPFL general-purpose

database. b LIRIS masking database. c The UWB compression database. d IEETA simplification database
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4.7 Cross dataset evaluation

In this section, we investigate the generalization ability of

SCNN-BMQA. To do so, we perform a cross database

evaluation by training our network on the general-purpose

database and using the other databases for the test. We

choose this database for the training process because it

contains the highest number of distorted models and rich

variety of distortion types. Table 11 shows the results of

the cross dataset evaluation. This table presents the corre-

lation coefficients of each 3D object in the three tested

databases (i.e., LIRIS masking, UWB compression and

IEETA simplification) as well as the scores for the whole

repositories.

As we can see, our network successfully estimate the

perceived visual quality using the cross dataset evaluation

as proven by the high correlation coefficients obtained.

These results ensure the generalization ability of SCNN-

BMQA.

5 Conclusion

In this paper, we propose a no-reference MVQ assessment

method to accurately estimate the perceived visual quality

of distorted meshes. A CNN architecture is used to learn

sets of 2D patches rendered from the 3D mesh. The visual

saliency is adopted to select the most relevant regions with

high saliency level. SCNN-BMQA successfully predicts

the visual quality of distorted meshes as proven by the high

correlations with human judgment. In addition, it can be

useful in practical situations since it does not require any

information about the reference unlike the full reference

and reduced reference methods. We have tested many

network configurations (the number and the size of kernels,

and the size of the input data). It is demonstrated from the

experiments that the CNN parameters significantly affect

the performance of the network. It is proven also that the

used patch selection strategy based on visual saliency is

very effective; hence, we can conclude that the distortions

in salient regions are more important than in the normal

regions, and thus, the saliency information impacts more

the overall subjective score.

The current stage of development for the proposed

method is focused on using the CNN fed by 2D patches. In

order to process directly the 3D mesh, a possible direction

of future work would be using a network especially con-

ceived for the MVQ assessment task.
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