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On the optimal number estimation of selected features 
using joint histogram based mutual information for 

speech emotion recognition 

Abstract:  

Mutual information (MI) has been previously used to select the relevant features for the task of speech 

emotion recognition (SER). However, the procedure does not deliver the optimal number of relevant 

features. We propose MI based criterion for estimating this number defined as the minimum number of 

features that explains the variable of the class indices. In order to minimize the MI estimation errors, we 

also search the best histogram binning choice considering three formulas: Sturges, Scott and LMSE. Four 

selection strategies MMI, CMI, JMI and TMI have been implemented and applied on 39-features vectors 

and on large dimension vectors. The feature selection results have been validated on independent text SER 

system, based on GMM classifier and evaluated on EMO-db database. Results demonstrate that LMSE bin 

choice gives the best MI estimation and ensures a minimal number of features with slight performance 

drop. Particularly, using the proposed stopping criterion, the CMI strategy achieves reduction of 48.72% 

in the case of the 39-features vectors size and 67.86% in the case of large dimension vectors. Moreover, 

using the recognition rate criterion, the JMI strategy gives a comparable feature reduction with slight 

improvement of performance but requiring very high computation capabilities. 

Keywords: speech emotion recognition, mutual information, binning of joint histogram, features selection, 

MFCC coefficients, GMM models. 

 
 

1 INTRODUCTION 

Speech Emotion Recognition (SER) has received much attention over the last decade due to its wide application 

in security fields, human-computer interaction, interactive teaching, computer games or marketing (Huang, Gong, 

Fu, & F, 2014). It aims at automatically identifying the emotion state of a speaker from speech signal using tools 

of signal processing and pattern recognition fields. Specifically, an SER system involves a speech analysis tool to 

efficiently extract features from speech signal and a pattern classifier to identify the emotion class of input speech 

signals. In the literature, several SER systems based on different feature extraction methods and classification 

approaches have been presented (G Shashidhar: K & Sreenivasa, 2012). 

The features which are commonly used and discussed in several papers are the short-term spectral features 

including Linear Prediction Cepstrum Coefficients (LPCC), Perceptual Linear Prediction (PLP) and Mel-

Frequency Cepstrum Coefficients (MFCC) and the prosodic features including the energy and pitch feature (Basu, 

Chakraborty, Bag, & Aftabuddin, 2017) (Wu, Falk, & Chan, 2011). According to several authors, results have 

demonstrated the efficiency of  MFCC descriptor for the task of SER (Wu, Falk, & Chan, 2011) (Pan, Shen, & 

Shen, 2012) (Zaidan & Salam, 2016) (Trabelsi & Bouhlel, 2016). Furthermore, researchers have proposed several 

classification approaches, such as Hidden Markov Model (HMM) (Schuller, Rigoll, & Lang, April 2003), 

Gaussian Mixture Model (GMM) (Neiberg, Elenius, & Laskowski, 2006) (Vijesh Joe & Shinly Swarna Sugi, 

2016), K-nearest Neighbors (KNN) (Lanjewar, Swarup, & Patel, 2015), Support Vector Machines (SVM) and 

Artificial Neural Networks (ANN) (Pao, Chen, Yeh, & Li, September 2006) (Mannepalli, Sastry, & Suman, 2018). 

 

An important step that may be needed in the SER system is the selection of relevant features after feature extraction 

step. It has the principal aim to select the important features that contain relevant information about the emotion 

classes without redundancy. This decreases the computing time and memory capacity and furthermore may 

improve the accuracy while avoiding the well known curse of dimensionality phenomenon (Jain, Duin, & Mao, 

2000).  

The feature selection methods have been grouped into two principal categories (Kohavi & John, 1997). The first 

one is the wrappers category which methods are based on the accuracy of the classification system as relevance 

measure of the features subsets. Accordingly, methods from wrappers category depend on the classifier to be built 

(Giannoulis & Potamianos, 2012), which needs huge computational cost for reducing the size of high dimensional 

feature space. The second one is the Filters category which methods are based on the relevance of features useful 

for describing the classes. The information quantity shared between the features and the classes is used as 

relevance measure of the subset features. Accordingly methods from filters category do not depend on the 

classifier, which considerably reduces the computational cost, compared to the wrappers methods. 



 

 

In (Manolov, Boumbarov, Manolova, Poulkov, & Tonchev, 2017), the authors have applied a filter approach 

algorithm based on the mutual information estimation as relevance measure of the features for the task of speech 

emotion recognition. They have used several strategies based on the mutual information maximization criterion 

using the Brown’s Toolbox (Brown, Pocock, Zhao, & Lujan, 2012). However, two major concerns have not been 

introduced using this Toolbox. The authors (Brown, Pocock, Zhao, & Lujan, 2012) have mentionned that the 

computation of entropies for continuous and ordinal variables is highly non-trivial and requires an estimation of 

distributions which are not known practically. In fact, they have proposed the histogram approach using fixed-

width bin to estimate the entropy and the mutual information. Indeed the toolbox operates on discrete data, which 

needs the discretization of continuous variables before applying mutual information maximization criteria. But 

the histogram proposed approach is a critical point that must be carefully driven before applying Brown’s Toolbox. 

The discretization issue is thus one concern. Moreover, the toolbox does not allow getting out the estimated values 

of the mutual information. These values can be used in order to determine the optimal number of relevant features. 

The optimal number issue is the main concern of this work. 

 

We firstly propose to give more details about the entropy and the MI computation using histogram approach and 

to study the influence of the histogram bin number choice on the estimation quality. Based on this study, we 

secondly discuss the optimal number of features for the task of SER using MI values based criterion. In order to 

validate this proposal, an SER system has been carried out first using MFCC features with energy and their first 

and second derivatives and second using a combination of several types of spectral features (MFCC, LPCC, PLP) 

and prosodic features (pitch and energy). The latter validation investigates large features dimensions. 

Also, the system performance was evaluated using the Berlin Database of Emotional Speech (Emo-DB) that 

considers different emotion classes such as anger, boredom, disgust, fear, happiness, sadness and neutral 

(Burkhardt, Paeschke, Rolfes, & Sendlm, 2005). 

2 EMOTIONAL SPEECH RECOGNITION SYSTEM  

An automatic emotion recognition system is a pattern recognition sytem generally composed of two important 

phases, the traning (learning) phase and the testing (classification) phase. Both of these phases require a features 

extraction step to transform each temporal signal into a sequence of short-term feature vectors. The training phase 

aims to learn the classes of emotion patterns from the occurences of training database using a classes modeling 

approach. In the testing phase, the system uses a classifier to identify the class the unknown input signal belongs 

to. Generally, a testing database of signals is used to classify each signal and finally evaluate the system 

performance using accuracy criterion. Based on this general description, we hereafter present the architecure of 

the SER system we developped with a selection step useful for estimating the optimal number of selected features. 

Feature selection will be introduced in section 3. 

 

2.1 Proposed architecture 
 

Figure (1) presents the diagram of our SER system. It shows the training phase for the learning of the emotion 

occurences and the testing phase for the performance study of the automatic identification system. Each phase 

takes into count a short-term feature extraction. The diagram also includes the selection procedure provided in this 

study for dimensionality reduction. 

 



 

 
Figure 1 Diagram of the SER system: the training phase (dashed lines) learns the GMM emotion models using the occurrences 

of the training database with their corresponding text; the selection step (dotted lines) extracts the most relevant features which 

reduces the dimensionality of the problem; the testing phase (full lines) decides in which emotional class the test signal belongs 

to. 

 
 

2.2 Emotion modelling 
 

The emotions recognition system used in this work is based on the GMM approach that models each emotion by 
GMM with n Gaussians (Vijesh Joe & Shinly Swarna Sugi, 2016). Implementation of the system is carried out 
using HTK tools (Hidden Markov Model Toolkit), in which we consider GMM as HMM model with one state 
modeled by GMM of n Gaussians components with diagonal covariance matrix (Young, Kershaw, Odell, & 
Ollason, 1999). 
 

The HMM model is fed by speech descriptors and according to several authors (Wu, Falk, & Chan, 2011), results 

have demonstrated the efficiency of MFCC descriptor for the task of SER (Pan, Shen, & Shen, 2012) (Zaidan & 

Salam, 2016). In (Trabelsi & Bouhlel, 2016), the authors have compared performance results of different 

descriptors such as MFCC, PLP, LPCC, and Rasta PLP. The study has shown that the best performance results 

are obtained with 12-coefficient MFCC. In order to take into account dynamic evolutions of the data, we used  

MFCC with energy and their 1st and 2d derivatives which forms 39-components feature vectors (Wu, Falk, & 

Chan, 2011). 

Each utterance of the database is preprocessed by suppression of silence of signals boundaries and is filtered by a 

high-pass filter with a pre-emphasis coefficient of 0.97 (Wu, Falk, & Chan, 2011). Then, each obtained utterance 

signal corresponding to an emotion class is converted into a sequence of short-term vectors of 39 features 

computed each 10 ms on 30 ms hamming-windowed speech frame, using the ‘Hcopy’ command of HTK library. 

The vectors sequences of the training database are used to model each emotion class by a GMM model using the 

command ‘HEREST’. Next, each sequence of vectors of the testing database is classified using the command 

‘HVITE’. Finally, performance evaluation is done by using the command ‘HResult’. 
The quality of the classification system is evaluated by a recognition rate RR defined as: RR � � � ��  

where � is the total number of occurrences given at the input of the classifier and � is the number of misclassified 

occurrences. 

 

 

2.3 Speech database 
 

We have used the Berlin Database of Emotional Speech (EMO-DB) to evaluate the system performances 

(Burkhardt, Paeschke, Rolfes, & Sendlm, 2005). The dataset is composed of 10 German sentences of different 

texts (5 short sentences constitute a set A and 5 longer sentences constitute a set B) pronounced by 10 actors (5 

male, 5 female) who simulated seven primary emotion states (anger, boredom, disgust, fear, happiness, sadness) 
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including neutral. The sentences come from everyday communication and can be interpretable in all applied 

emotions. The total collection consists of 800 utterances including some second versions but the final collection 

considered only 535 utterances because a human validation was performed for each utterance (20 listeners had to 

decide in which emotional state the speaker had been and the decision for dataset inclusion was made when the 

recognition rate was higher than 80% and also considering for more than 60% of the listeners sentences are 

natural). Table1 details the distribution of the sentence recordings among the 7 emotional states as well the 

numbers of occurences used for testing and training phases, respectively. The sentences have a length of 1-2 

seconds. Recordings were taken with a sampling frequency of 48 kHz and later downsampled to 16 kHz. 

 
 Table 1 Distribution of the sentences of EMO-DB among the 7 emotional states and per state for testing / training. 

Emotions anger boredom disgust fear happiness sadness neutral 

Number 127 81 46 69 71 62 79 
Test / Train 62/65 40/41 21/25 34/35 33/38 30/32 38/41 

 

In the present work, the set A of the short sentences is taken as the training database that has 277 utterances, 

whereas the set B of the longer sentences is taken as the testing database, that has 258 utterances. Since the 

sentences of the testing database have not the same text than the text of the training database, hence we obtain an 

SER system in independent text mode. 

3 HISTOGRAM APPROACH BASED MUTUAL INFORMATION FOR 

FEATURE SELECTION 

 

3.1 The feature selection problem 

 
In large dimension problems, dimensionality reduction of the number of features is often a necessity. The 

reduction can be achieved either by transforming the features of by selecting them. The first approach consists in 

transforming the features of an initial set F of n features {Y
, Y� ⋯ , Y�}  in a low dimension subset of k features.  

This solution however requires the computation of all the features as well as the choice of an appropriate criterion 

for the definition of the transformation, which is not easy. The second approach consists in selecting the k most 

relevant features {Y�� , Y�� ⋯ , Y��}  from the set F which forms the subset S���. In opposite to the former, this 

second solution needs only the k selected features to be computed for the classification task in the testing phase. 

This approach will be preferred. 

The feature selection procedure uses an information measure of a subset of features useful for a classification 

task. S��� is an optimal subset of features if its information is maximum for the classification task. Mutual 

information (MI) is often used as a quantity of information measure because of its ability of assessing the nonlinear 

statistical dependency between variables. So the subset S��� is chosen in such a way that the MI between S��� and 

the class label C is maximized: 

S��� � arg max ⊂" I(C; S).     (1) 

However, the number of combinations of features for exhaustively constructing the sets S to be tested rapidly 

becomes prohibitive when the size of S grows. To circumvent this problem, “greedy forward” search strategies 

can be employed. The search is a one-by-one selection procedure that gives at each step j the best feature    Y�'  
from the unselected features set. This new selected feature Y�'  grows the already selected subset S()
 by appending 

it as  S( � Y�' ∪ S()
: 

Y�' � arg max+,∈") '.�/I0C; Y1 , S()
23     (2) 

Since I0C; Y1 , S()
2 � I0C; S()
2 + I0C; Y1\S()
2 (Cover & Thomas, 1991), (2) can be reduced to: 

   Y�' � arg max+,∈") '.�/I0C; Y1\S()
23     (3) 

Equation (3) can also be expanded in a multivariate MI of order 3 between C, Y1 and S()
 as: 

   Y�' � arg max+,∈") '.�/I(C; Y1) � I60C; Y1; S()
23    (4) 



 

The I6 term may be positive which corresponds to withdrawing redundancy introduced by the new feature. If 

this term is negative, this means that Y1 and S()
 are synergic (Cover & Thomas, 1991).  

 

The evaluation of I60C; Y1; S()
2 becomes very difficult when j grows because this evaluation requires the 

estimation of high-dimensional probability density functions that cannot be precise enough for fixed database sizes 

(Drügman, Gurban, & Thirian, 2007). Most of the algorithms propose a simplification of (4) following different 

strategies like MIM, MIFS, MRMR, CMI, DISR, CIFE, TMI, ICAP (Brown, Pocock, Zhao, & Lujan, 2012) 

(Hacine-Gharbi, Deriche, Ravier, Harba, & Mohamadi, 2013). In (Brown, Pocock, Zhao, & Lujan, 2012), the 

authors conclude that the JMI strategy provides a good compromise between precision, flexibility and stability 

when the database is small size. They also point out the MRMR and CMI strategies that perform better than other 

ones in terms of balance between high relevance and small redundancy. We give below the derivation of (4) for 

four selected strategies. 

 

� MMI (Maximum MI) Y�' � arg max+,∈") '.�8I(C; Y1)9      (5) 

� TMI (Truncated MI) Y�' � arg max+,∈") '.�:I(C; Y1) � ∑ I60C; Y1; Y��2 ()
<=
 >   (6) 

� JMI (Joint Mutual Information) Y�' � arg max+,∈") '.� : I(C; Y1) � 
()
 ∑ I60C; Y1; Y��2 ()
<=
 >   (7) 

� CMI (Conditional Mutual Information) 

Y�' � arg max+,∈") '.� ?I(C; Y1) � max+@�∈ '.� I60C; Y1; Y��2A   (8) 

 

For JMI and CMI strategies, the term I60C; Y1; Y��2 is actually computed as I0Y1; Y��2 � I0Y1; Y��\C2. The MI I(X; Y) between variables X and Y is expressed as I(X; Y) � ∬ p(x, y)log H �(I,J)�(I)�(J)K dxdyMN)N  where p(x, y) is the 

joint distribution of (X, Y) and p(x) and p(y) are the marginal distributions. This continuous definition can be 

estimated by considering the discrete version of the I(X; Y) formula and by applying a histogram partitioning in 

the estimation of the distributions. Partitioning affects performance of the MI discrete estimator. This constitutes 

a binning problem that is introduced in the next section. 

 

3.2 The binning problem 
 

All the strategies are faced to MI estimation errors with the increasing number of selected features. Indeed, the 

maximization procedure of MI is based on the sum of individual MI estimations which number grows with the 

number of selected features. The result is an accumulation of errors, which can produce very different evolutions 

of the MI values between the current selected subset and the class label as a function of the selected features, for 

the same data. Moreover, as the number of samples decreases for a correct estimation with the MI dimension, the 

estimation error worsens. So care must be taken in the MI computations in order to limit the error accumulations 

that are harmful for the feature selection criterion and for finding an optimal number of features for a speech 

emotion recognition task. 

The uniform histogram partitioning is often used because of some existing formula for an immediate estimation 

of the number of bins k, or equivalently of the bin width ∆. The formula use the data samples number N and may 

also require some classical statistical parameters of the data. Three formula were investigated. Sturges proposed k � 1 + log� (N) (Sturges, 1926). Scott proposed ∆� 3.5σ/ √NX
 where σ stands for the data standard deviation 

(Scott, 1992). A more recent estimator proposed in (Hacine-Gharbi, Deriche, Ravier, Harba, & Mohamadi, 2013) 

minimizes the mean square error estimation of MI. This LMSE estimator writes 

k � round Z
� + 
� [1 + 4] ^_à
)à�b     (9) 

where the unknown correlation coefficient c of the data has been replaced by its estimated value cd. 

Additionally, the MMI criterion makes only use of I(C; Y1) which is developed as  I(C; Y1) � H(Y1) � H(Y1\C). 



 

This computation requires the following LMSE formula for the entropy estimation (Hacine-Gharbi, Deriche, 

Ravier, Harba, & Mohamadi, 2013): 

k � round fĝ + �6g + 
6h   (10) 

with i � j8 + 324N + 12√36N + 729N�X
 assuming data follow a Gaussian distribution with range equal to 

six times the standard deviation. 

The three strategies have been used and compared in the frame of the feature selection procedure. 

4 EXPERIMENTS AND RESULTS  

Several experiments are conducted in order (1) to give the optimal configuration parameters of the SER 
system; (2) to study the influence of the bin number on the MI estimation for feature selection in the task of SER; 
(3) to estimate the optimal number of features from the MI curve, and validate the result using accuracy criterion. 

 

4.1 Configuration study of the GMM-based SER system 
 

The design of an SER system based on GMM classifier firstly requires searching the optimal number of 
Gaussian components of GMM models of the emotions classes, which gives the best accuracy rate. In order to 
practically demonstrate the importance of adding energy and dynamic features to the static MFCC features, a 
comparative study is performed. We called this configuration of descriptor as MFCC_EDA, in which E represents 
the energy, D the derivative ∆ (speed) and A the double derivative ∆∆ (acceleration). Hence, this experience aims 
to find the best combination for the Gaussian components number and the descriptor type. 

 
Table 2 gives the RR of SER system based on GMM models as a function of different number of Gaussian 

components and different descriptors types. 
 

Table 2 Recognition rate as a function of the Gaussian number n of GMM models and descriptor types. 

 

n 

MFCC 

_EDA 

MFCC MFCC 

_E 

MFCC 

_ED 

MFCC 

_D 

1 61.63 49.22 51.94 62.02 57.36 
2 52.71 54.26 53.10 60.08 62.40 
4 68.60 60.85 60.85 64.34 66.28 
8 64.34 63.95 61.24 64.73 63.18 
16 72.09 62.79 64.34 73.26 65.89 
32 75.97 67.83 67.44 71.71 71.71 
64 80.62 74.81 73.64 77.52 74.03 
128 84.50 76.36 80.23 84.88 79.84 
256 82.95 78.68 81.01 84.11 82.17 

 

From this table, we can give these points: 
- the optimal combination is obtained taking the Gaussian components number equal to 128 and taking the 

descriptor MDCC_ED or MFCC_EDA; 
- the energy and the dynamic features ∆ improve the RR; 
- the ∆∆ added alone does not improve the RR. 

 
In the following sections, we will consider the MFCC_EDA descriptor. 
Table 3 gives the confusion matrix obtained in the case of MFCC_EDA descriptor. From this matrix, fear and 

happiness classes have the worst performance values. 

 
Table 3 Confusion matrix for MFCC_EDA descriptor of the SER system. 

 Anger Bore. Disg. Fear Happ. Neut. Sad. 

Anger 96.78 0 1.61 0 1.61 0 0 

Bore. 0 85.0 0 0 0 10 5 

Disg. 4.76 4.76 90.48 0 0 0 0 

Fear 11.77 0 0 52.94 17.65 8.82 8.82 

Happ. 33.33 0 0 0 66.67 0 0 

Neut. 0 2.63 0 0 0 97.37 0 

Sad. 0 3.33 0 0 0 3.33 93.34

 



 

 

4.2 Histogram binning study for feature selection 

 

The aim of this experiment is to study the effect of bin number choice on the MI estimation for the feature 
selection using MMI, CMI, JMI and TMI strategies. The different binning formulas used are those of Sturges, 
Scott, LMSE given in subsection (3.2). 

Figures 2, 3, 4 and 5 show the results of MI estimation I0C; Y( , S()
2 using respectively MMI, CMI, JMI and TMI 

selection strategies (the MI estimations are the expressions in the brackets of eq. 2 to 5). For each figure, we 

consider the previews binning formulas with corresponding ST, SC, LMSE legend. 

 

 
Figure 2 Estimation of I0C; Y(, S()
2 using MMI strategy with Sturges, Scott and LMSE bin choices. 

 

 
Figure 3 Estimation of I0C; Y(, S()
2 using CMI strategy with Sturges, Scott and LMSE bin choices. 

 

 
Figure 4 Estimation of  I0C; Y(, S()
2 using JMI strategy with Sturges, Scott and LMSE bin choices. 
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Figure 5 Estimation of  I0C; Y(, S()
2 using TMI strategy with Sturges, Scott and LMSE bin choices. The entropy H(C) is added 

showing that this theoretical value is reached only using the LMSE binning choice with the TMI strategy.  

 

From the previews results, adding the 13 features of ∆∆ descriptor does not improve the RR, hence these features 

will not add any information that explains the emotion classes. Theorically, the I0C; Y(, S()
2 values must not 

surpass the entropy H(C) of the class index variable C and should reach a plateau for an optimal number of relevant 

features (Hacine-Gharbi, Deriche, Ravier, Harba, & Mohamadi, 2013). However, practically, the curves of the MI 

may not reach a plateau after the selection of the relevant parameters because of the MI approximation using 

heuristic methods and also because of the MI estimations errors caused principally by the limited of samples 

number. Figures 2, 3, 4 and 5 show that the mutual information increases rapidely with the number of selected 

features for Scott and Sturges bin choices whatever the selection strategy and reaches great values compared to 

the LMSE bin choice. Especially in the case of TMI strategy with using Scott bin choice, the MI curves reach far 

higher values than those obtained with other bin choices and than the entropy H(C). Only the LMSE bin choice 

allows the MI estimation approximately reach a plateau. 

To sum up, figure 6 shows together the curves of the MI for the four strategies using the LMSE bin choice. 
 

 
Figure 6 Estimation of I0C; Y(, S()
2 using MMI, JMI, CMI and TMI strategies in the case of LMSE bin choice. 

 

The curve obtained by TMI strategy gives higher values than those of the others strategies, which is probably 

explained by a higher error acumulation of I3 estimation in the sum. Furthermore the CMI, JMI and MMI curves 

present a plateau at approximately 20 features with  minimum fluctuations caused by MI estimation errors. 

However the TMI reaches approximaly the plateau at 30 features. 
Hence, in the following section, we consider only the LMSE bin choice. 

 

 

 

4.3 Performance study for feature selection using MMI, CMI, JMI and TMI strategies  
 

This experiment aims to study performance of the SER system in terms of RR as a function of the selected features 

order. We consider the four selection strategies using LMSE bin choice. Figure 7 shows the emotion RR results 

with respect to the selected features number using MMI, CMI, JMI and TMI strategies. 

 

I(
C

;Y
j,
S

j-
1
)



 

 
Figure 7 Emotion RR as a function of the selected features order with the four strategies MMI, CMI, JMI and TMI. 

 

It can be observed that about 20 features are sufficient for explaining the classes because a similar RR value is 

obtained with the total number of 39 features. However discrepancies exist between the strategies in the first 

selected features. Table 4 and 5 give the numbers of the selected features with the corresponding RR values with 

the features subset growing, respectively. 

 
Table 4 Number of the first 10 selected features for each strategy. 

 Y
 Y� Y6 Yp Yq Y^ Yr Ys Yt Y
u 

MMI 2 1 4 5 3 9 10 6 8 13 

CMI 2 13 5 1 4 9 10 3 8 28 

JMI 2 13 1 5 4 9 3 8 10 6 

TMI 2 13 1 5 8 9 3 28 4 27 

 

It is clear from these tables, that the number of static features is dominant which confirms the results obtained in 

(Trabelsi & Bouhlel, 2016). Further, the MMI strategy gives the worst performance results for the 6 first selected 

features. This can be explained by the MMI selection procedure that does not take into account any redundancy 

with the already selected features. 

 
Table 5 Recognition rate obtained for the first 10 selected features. 

 Y
 Y� Y6 Yp Yq Y^ Yr Ys Yt Y
u 

MMI 42.64 46.51 48.45 53.10 56.20 63.95 68.60 67.83 72.87 74.03 

CMI 42.64 48.06 50.39 56.98 59.30 64.34 63.95 71.32   71.71  73.26 

JMI 42.64 48.06 52.71 56.98 59.30 64.34 64.73 69.77 71.71 74.03 

TMI 42.64 48.06 52.71 56.98 60.47 64.34 67.44 67.83 68.22 69.38 

 

 

4.4 Study of optimal number of features 

 
From the previews experiments, we have noticed from the RR and MI curves, that a number of features greater 

than 20 can approximately reach a plateau. This experiment now aims at searching for the minimum number of 

features that gives the best performance results, taking independently two criteria respectively based on the MI 

estimation values (classifier-independent) and the RR values (classifier-dependent). 

 

 

Firstly, we follow the same criterion as the one described in (Hacine-Gharbi & Ravier, 2018). The criterion 

considers the maximum value MIwxI � max( MI(C; Y(, S()
 ) of the MI estimation and a parameter y which 

corresponds to a small reduction of the MIwxI value. This MI reduction that equals to (1 � y)% can be explained 

by MI estimation errors and by heuristic MI approximations. Hence, the experiment searches for the minimum 

number of selected features that reaches yMIwxI. Table 6 shows the evolution of the minimum number of selected 

features (#SF) as a function of y values given in % taken as 100, 98, 96, 94, 92 and 90, for the four tested strategies. 

The RR values are also given with RR{{{{ values that are normalized with respect to the RR obtained with the total 

number of features (84.50 % for 39 features). 

By considering a 10% reduction of MIwxI, the CMI strategy gives the best reduction of the number of features 

(20) but the RR{{{{ drops of 2.76%. Further the JMI, TMI and CMI give a good compromise between the reductions 

of feature numbers and a small RR{{{{ drop of about 1%. Even if this criterion is independent of the RR, it succeeds 



 

in providing a reduced features number that gives an acceptable performance results, without the necessity of 

highly costly classifier-dependent feature number searching procedure setup. 

 
Table 6 Results of optimal number of features in the classifier-independent case. The #SF value is the minimum number that 

reaches y % of the MIwxI value. The RR and RR{{{{ values are the corresponding recognition rates with their normalized versions 

(w.r.t. RR(39)). 

 | 100 98 96 94 92 90 

MMI #SF 39 35 33 31 29 27 

RR 84.50 84.11 84.11 81.78 83.33 82.95 }}{{{{ 100 99.54 99.54 96.78 98.62 98.17 

CMI #SF 35 29 26 24 22 20 

 RR 82.56 83.72 84.11 82.56 81.78 82.17 

 }}{{{{ 97.70 99.08 99.54 97.70 96.78 97.24 

JMI #SF 39 35 32 30 27 25 

RR 84.50 84.11 82.95 84.50 83.72 83.33 }}{{{{ 100 99.54 98.17 100 99.08 98.62 

TMI #SF 36 32 29 26 24 23 

 RR 82.95 83.72 83.72 83.72 81.40 81.78 

 }}{{{{ 98.17 99.08 99.08 99.08 96.33 96.78 

 

 

Secondly, we consider a classifier-dependent criterion which is based on the RR performance values. The criterion 

searches for the minimal number of features (#FT) that gives a greater or equal RR value than the value obtained 

for the total feature number (RR(39)). Table 7 shows #FT values, the corresponding normalized RR{{{{~. In order to 

study the curse of dimensionalty phenomenon, the maximum RR value is also pointed out for each strategy. So 

the feature number that gives the maximum RR value (#FM) is reported, as well as the corresponding normalized RR{{{{� values. For both cases, α values to be applied on MI are also reported in order to make the link with MI 

criterion used in the classifier-independent case. 

 
Table 7 Results of optimal number of features in the classifier-dependent case. The #FT value is the minimal number of features 

that gives a greater or equal RR value than RR obtained for the 39-total feature number. The RR{{{{~ values are the corresponding 

normalized rates with their y values. The #FM value is the number of features that gives the maximum RR value (with their RR{{{{� and y corresponding values). 

 #FT  }}{{{{�  |(#��)  #FM  }}{{{{�  |(#��)%  

MMI 22 100.91 85.03 22 100.91 85.03 

CMI 27 100.45 97.45 32 101.84 99.77 

JMI 19 100.45 83.58 26 100.91 91.22 

TMI 21 100.00 87.00 30 100.45 97.46 

 

This criterion ensures a minimum number of features with performance improvement compared to those obtained 

in the case of 39 features. The JMI strategy gives the lowest number of features (19 parameters). Using the first 

MI criterion, this last result is obtained by taking y equal to 83%, which represents a drop of MI of 17% with 

respect to the MIwxI value. Therefore, in order to ensure a minimum number of features that can achieve good 

performance results, it is necessary to take y values between 80 and 100. As previously mentioned, this variation 

can be explained by the estimation error of MI and the approximations of the MI proposed by the different 

strategies. The results show a maximum RR of 86.05% with 32 features (not reported in Table 7) using CMI 

strategy. This peaking value  can be explained by the curse of dimenstionnality phenomena.  

We conclude from this study that using the MI curve can inform about the minimum number of features without 

considering classifier performance. With the second RR criterion that requires more computing time, results 

demonstrate the best compromise of features reduction and RR improvement, particularly with JMI strategy. 

 

4.5 Combination of different feature types 

 
This section has principaly the aim to validate the proposed algorithm of optimal feature number estimation for 

the case of different feature types in large dimension. Furthermore, it has the aim to compare the relevance of 

different feature types for the identification of dominant feature types useful for explaining the emotion classes. 

In this work, we investigate common combinations of features (Pan, Shen, & Shen, 2012) which take into account 

spectral features with prosodic features extracted from a short-term analysis. In particular, each MFCC spectral 

feature vector is enriched with 12 LPCC and 12 PLP features with their 1st and 2d derivatives using the same 

signal preprocessing (suppression of silence of signals boundaries, filtering, windowing). This new vector forms 



 

a vector of 108 spectral components (36 features for each type). The short-term prosodic features include the 

energy with their 1st and 2d derivatives (3 features) and the pitch (1 feature). The pitch is estimated at each 10 ms 

using Praat Software (Boersma & Weenink, 2018). Hence each signal is converted into a sequence of vectors, 

each of 112 components. In the training phase and testing phase, the same configuration of the SER system 

described in section 2 is taken with using 112 features (except in the following section for searching the number 

of Gaussians for each features combination) . 

 

4.5.1 Performance study with features combination 

 

In this section, we provide a comparative performance study using the different spectral and prosodic types of 
features described in the last section and taking different combinations of them. Table 8 shows recognition rates 
using different combinations of these types and also choosing for each case the number of Gaussians (between 1 
and 256 with power of two progression) giving the best recognition rate. 

 
Table 8 Recognition rates for different combinations of MFCC, LPCC, PLP feature types plus energy and pitch F0. As studied 

in section 4.1, the dynamic features DA are always included (either applied on prosodic or spectral features or both). 
Feature types Prosodic Spectral Prosodic + spectral 

Feature 

combinations 

 

E_DA E_DA 

_F0 

 

MFCC 

_LPCC 

_PLP 

 

MFCC 

_LPCC 

_PLP 

_DA 

 

 

MFCC 

_E_DA

 

 

LPCC 

_E_DA

 

 

PLP 

_E_DA 

MFCC 

_LPCC 

_PLP 

_E_DA 

MFCC 

_E_DA 

_F0 

LPCC 

_E_DA

_F0 

PLP 

_E_DA

_F0 

MFCC 

_LPCC 

_PLP 

_E_DA 

_F0 

Recognition 

Rate 
54.65 53.88 82.17 81.78 84.50 77.52 81.78 81.01 83.33 79.46 83.72 84.11 

Number of 

Features  
3 4 36 108 39 39 39 111 40 40 40 112 

Number of 

Gaussians 
64 32 128 128 128 128 128 64 128 128 128 128 

 

From Table 8, we give the following points: 
- spectral features alone give better performance results than prosodic features alone; this result confirms  

(Pan, Shen, & Shen, 2012) in which the bad score of prosodic features may be caused by the weak number of 
features (energy and pitch); 

- in some cases, the combination prosodic + spectral features can improve performance by comparison 
with using only prosodic or only spectral features; 

- the best combination between spectral and prosodic features is MFCC with energy and their dynamic 
features; it increases the recognition rate of 30.62% by comparison with the prosodic features only (E_DA_F0); 
adding LPCC and PLP features to the latter slightly worsens performance results which is probably caused by the 
redundancy (Pan, Shen, & Shen, 2012) and the large dimension of feature vectors giving rise to curse of 
dimensionality problems; 

-  the pitch F0 slightly improves performance results by combination with LPCC or PLP but not with MFCC 
or energy; this last result can be probably justifed by the feature redundancy. 
 
In order to reduce dimensionality and probably improve performance, we give in the next section dimensionality 
reduction results from a set of 112 previoulsy described features using MI based feature selection startegies. 
 
 

4.5.2 Performance study for 112-feature selection using MMI, CMI, JMI and TMI strategies  
 

The purpose of this study is to try to select the most relevant features among a high dimensional space of 112 

features composed of a ranked vector of MFCC_EDA (1-39), LPPC (40-75), PLP (76-111) and pitch F0 (112). 

The energy and their dynamic features are respectively numbered as 13, 26 and 39. 

 
Table 9 Number of the first 10 selected features among 112 for each strategy. 

 Y
 Y� Y6 Yp Yq Y^ Yr Ys Yt Y
u 

MMI 2 77 1 76 4 5 79 87 3 78 

CMI 2 13 5 76 40 4 9 86 42 80 

JMI 2 13 76 5 77 40 1 4 9 79 

TMI 2 13 76 40 5 1 8 41 9 83 

 

 



 

Table 10 Recognition rate obtained for the first 10 selected features among 112. 
 Y
 Y� Y6 Yp Yq Y^ Yr Ys Yt Y
u 

MMI 42.64 46.90 46.90 49.22 51.94 58.53 58.14 61.24 69.38 66.67 

CMI 42.64 48.06 50.39 58.91 61.63 64.34 65.89 69.77   70.93  65.12 

JMI 42.64 48.06 52.71 58.91 58.14 60.08 62.02 63.57 65.89 68.22 

TMI 42.64 48.06 52.71 56.98 61.63 57.75 65.12 66.28 68.99 68.99 

 

From Table 9, it can be noticed that the static MFCC coefficients are mostly selected with at least 4 MFCC features 

among the first 10 selected features. The other selected features mostly come from the PLP type. This selection 

confirms the result given in (Trabelsi & Bouhlel, 2016) which shows the importance of MFCC type in the SER 

task. Note that features in PLP domain (77 and 76) that are similar in rank to features in MFCC domain (2 and 1) 

are selected together using MMI strategy but not using CMI or JMI strategies. This can be explained by the fact 

that the MMI strategy does not take into account the redundancy between the features. 

Table 9 also shows that static features are always prefered than dynamic ones. The static relevance domination 

confirms the previous results obtained in Table 4 and by (Trabelsi & Bouhlel, 2016). Furthermore, the energy is 

the second feature selected by CMI, JMI and TMI strategies, which confirms the relevance of the prosodic feature 

type. 

By comparing Table 10 with Table 5, RR performance results worsen using 112-feature selection procedure. This 

may be due to the limitations of the selection algorithms faced to many redundant features. Many reasons can 

probably explain such limitations: the selection strategies remain heuristic and take redundancies up to order 3 in 

MI computation; histogram binning procedure causes error accumulation of MI in high dimension. 

 

4.5.3 Optimal number of features 
Since the number of features is higher than in the preceeding study, which causes more error accumulation, largeur 

steps beween y values are considered. Results are given in Table 11 for only the CMI startegy. 

 
Table 11 Results using CMI strategy of optimal number of features in the classifier-independent case. The #SF value is the 

minimum number that reaches y % of the MIwxI value. The RR and RR{{{{ values are the corresponding recognition rates with 

their normalized versions (w.r.t. RR(112)). 

 | 100 95 90 85 80 75 

CMI #SF 81 53 43 36 30 25 

 RR 82.56 85.27 82.56 83.33 80.62 80.23 

 }}{{{{ 98.16 101.38 98.16 99.10 95.85 95.39 

 

Whatever the y values, the RR values are above 80% like in Table 6. The optimal number of features decreases 

at the same time the y value decreases and it can reach dimensionnality reduction of 67.86% taking y equal to 

85%. However this number is always higher by considering selection among 112 features than among only 39 

MFCC_E_DA features. Note that the MFCC coefficients are known to be good decorrelators between variables 

and this property is not provided by LPCC and PLP. This explains some higher performance results when using 

MFCC features. 

5 CONCLUSIONS 

The aim of this study was to estimate the optimal number of selected features for the task of speech emotion 

recognition. We have investigated four selection strategies that select features sets according to their relevance, 

based on MI computation. The optimal number was then estimated as the minimum number of features using a 

criterion based on the maximum value of MI over the feature-selected sets. A comparison study was carried out 

using the recognition rate criterion for the optimal number estimation of features. 

 

In this work, we have used the histogram approach to estimate MI values for its simplicity. However, this approach 

is faced to the binning problem that was discussed by taking several bin number choices such as Sturges, Scott 

and LMSE formulas. Results were obtained by carrying out an SER system based on a GMM classifier combined 

with features extraction step that takes 39-features vectors and secondly 112-features vectors. The features vectors 

were composed of the static of MFCC coefficients, the energy and their dynamic features ∆ and ∆∆. The SER 

system performance was evaluated using the EMO-db database. Also other results were obtained by taking large 

dimension vectors including spectral and prosodic features. 

The results demonstrate that LMSE choice gives the best estimation of MI, which succeeds in approximately 

reaching the expected plateau in the MI curve. The study has shown that the MI based criterion gives acceptable 

performance results compared to the criterion based on the curves of recognition rates. Practically, the CMI 



 

strategy combined with MI based criterion gives the high features reduction of 48.72% (from 39 to 20 features) 

and of 67.86% in a large dimension case (from 112 to 36) with a slight drop of performance results. On the other 

hand, the JMI combined with the RR criterion gives the best feature reduction of 51.28% (from 39 to 19 features) 

with performance improvements. However, this last result is classifier-dependent and requires very high 

computation capabilities. 

We conclude that taking MI estimation with a good choice of bin number can help estimating the minimal number 

of relevant features for the task of SER, without taking into account classifier performance. This result is 

particularly interesting in high-dimensional systems. 

A principal perspective is to extend this study for multimodal emotion recognition with speech and face modalities. 
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