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Abstract

This paper introduces Mixed Data Sampling (MIDAS) into the panel data context. To
address the unidentified nuisance parameter problem, we propose to invert model specification
tests for inference on the MIDAS parameter along with bounds tests for model coefficients.
Illustrative identification, simulation and empirical analyses are conducted in the dynamic GMM
framework. Our framework allows for departures from i.i.d. errors such as clustering and dynamic
specifications. A simulation study and an application to a model of reserve holdings illustrate
the usefulness of the proposed methods, and more broadly set a promising template for shrinkage
approaches.
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1 Introduction

A time dependent regression generally requires that all the variables have observations at the same
frequency as the dependent variable (for example, annual). If a regressor is available at a higher
frequency (e.g., monthly or weekly), common practice is to lower its frequency either by aggregating
the higher-frequency data using equal weights, or by using the first, middle, or last high-frequency
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observation as the representative value over the lower frequency interval. However, doing so may
lead to a loss of information pertaining to the high frequency data, or it may introduce specification
biases.

Ghysels, Santa-Clara, and Valkanov (2004) introduce the Mixed Data Sampling (MIDAS) frame-
work as a means of dealing with such arbitrary aggregation schemes. MIDAS is by now well-known
in the econometrics literature; see the special edition of the Journal of Econometrics (August 2016)
for a recent overview and applications. See also Ghysels (2016), Götz, Hecq, and Smeekes (2016),
Ghysels, Santa-Clara, and Valkanov (2004) for multivariate models, and more generally Clements
and Galvão (2008), Kuzin, Marcellino, and Schumacher (2011), Bai, Ghysels, and Wright (2013),
Guérin and Marcellino (2013), and Foroni and Marcellino (2013) for a comprehensive survey of
recent advances.

Another way to deal with regressors available at higher frequencies is to include them as is
in the regression, and to apply the unrestricted MIDAS (UMIDAS) estimation approach of Foroni,
Marcellino, and Schumacher (2013). This option is only viable when resulting degrees of freedom are
sufficiently large. Thus, a key benefit of MIDAS is that its polynomial aggregation structure limits
degrees of freedom losses while allowing for possibly unequal weights. Commonly-used polynomials
include the Almon distributed lag and the Beta distribution function. These allow for a variety of
weighting schemes including equal weights, hump-shaped weights, and assigning more/less weight
to recent versus older observations. This variety of weight profiles are obtained at a minimum cost
of two additional parameters, which together constitute the MIDAS vector (θ).

To set focus consider a simple panel regression with a single high-frequency covariate that non-
linearly embeds θ, and where the regression coefficient, β, is the parameter of interest. The presence
of these parameter non-linearities complicate identification. In this context, θ is weakly identified
in the near-zero β sub-space. This is the well known Davies (1977, 1987) problem, and while it was
addressed in the univariate case in Ghysels, Sinko, and Valkanov (2007), it remains to be studied
in the MIDAS-panel literature. This partly motivates our work.

Indeed, with the exception of a few recent applications to vector autoregression models such as
Ghysels (2016) and Binder and Krause (2014), the bulk of this literature remains univariate. In this
paper we introduce MIDAS to panel data regressions including dynamic models suitable for analysis
with GMM methods of the Anderson and Hsiao (1982) and Arellano and Bond (1991) (denoted as
Arellano-Bond) form. To our knowledge, this is the first formal extension of MIDAS methods to
the panel context.

Available time series procedures are not guaranteed to extend to dynamic panels due to the
dual-indexing of observations, which exacerbates incidental parameter biases. In particular lags may
cause various complications, including spurious seasonality as emphasized by Clements and Galvão
(2008, 2009). In a GMM panel framework, the instruments are lags of the endogenous variables and
the regressors, and the lag structure will thus interfere by construction. Formal specification checks
are thus needed. Indeed such specification checks are rare for MIDAS, even in the univariate case
(Kvedaras and Zemlys (2012); Miller (2013, 2018)). Lag and nuisance parameter specification issues
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provide further motivations for our work.
To address these problems, we propose an inference method that can be applied with any panel

data estimator that is valid when θ is known, and where the estimator can be paired with a specifica-
tion test that varies with θ. Our identification and numerical work uses the Arellano-Bond estimator
for illustrative purposes as it has been extensively studied in the dynamic panel literature. We pair
this with the Sargan statistics, or alternatively, with tests for neglected dynamics, which are com-
monly used specification tests. Below, our methodology is presented beyond the GMM special case,
and it can be summarized as follows.

For a fixed θ, the MIDAS regressor becomes an observable aggregation of the high frequency
series. Estimation thus reverts to the standard context where two statistics are typically available:
a criterion to test the significance of β given θ, and a diagnostic test to assess the structure, again
knowing θ. We first construct a confidence set for θ, by inverting the diagnostic test. Formally, we
collect the θ values that are not rejected by this test at the desired level of significance. Next we
put forth two bound tests for β: based on supremum p-value over a confidence set for θ, or over its
entire parameter space.

Thus defined, our approach allows for the possibility of an empty confidence set for θ which
signals misspecification. We thus jointly address model specification and the underlying nonlinearity,
as has been recently emphasized in the weak-IV literature; see Bun and Windmeijer (2010) for a
panel data application, and more generally Stock and Wright (2000), Andrews and Cheng (2012),
Dufour (1997), Kleibergen (2005), Ghysels and Wright (2010), and references therein.

We conduct a simulation study that illustrates size and power properties for our procedures.
The simulations focus on exponential Almon lag polynomials and two different designs that allow
us to quantify the extent of identification difficulties. Results show adequate size and good power
for our proposed inference methods on both θ and β.

We demonstrate the use of our methodology with an empirical application drawn from the
international macroeconomics field1. In this literature a key variable is the exchange rate, and studies
are often interested in its impact on various macroeconomic variables in the associated countries.
We adapt the panel model of Obstfeld, Shambaugh, and Taylor (2010) on country reserve holdings
to a panel-MIDAS setting that conforms with our proposed methods and we focus on the ‘Horserace’
models considered in Tables 1 and 2 of the original study. The high frequency series is the standard
deviation of the monthly exchange rate, and we consider three aggregation schemes for this variable:
equal-weights, MIDAS weights, and UMIDAS. Results reveal important policy-relevant differences
between an equally-weighted and a MIDAS weighted volatility aggregate, both in the originally
proposed cluster-corrected specification as well as in the alternative dynamic structure that we also
analyze.

1Relevant examples from other fields such as political economy, development, exchange rate effects, and real-
financial linkages; include Habib, Mileva, and Stracca (2017), Martin (2016), Li, Ma, and Xu (2015), Law and Singh
(2014), Allegret, Couharde, Coulibaly, and Mignon (2014), Aghion, Bacchetta, Ranciere, and Rogoff (2009), Acemoglu,
Johnson, Robinson, and Yared (2008), Beck and Levine (2004), and Bleaney and Greenaway (2001)
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In Section 2 we set the framework. Our methology is presented in Section 3. Section 4 summa-
rizes our simulation results. Our empirical analysis is discussed in Section 5 and Section 6 provides
concluding comments.

The mixed-data frequency introduces challenges to the notation of the paper, since some series
from the data is indexed by cross-section (i = 1, . . . , N) and time (t = 1, . . . , T ) while other series
include a third index for high-frequency time observations (j = 1, . . . ,m for each t). Throughout the
paper bold face lowercase variables represent vectors, and bold face uppercase variables represent
matrices. To distinguish between a two-index and three-index vector (or matrix) we introduce a
‘dot’ subscript to indicate that all available observations of a vector (or matrix) are retained. The
first example is a series of scalars with two indexes, ci,t, which is used to construct a subvector of
dimensions T ×1 by stacking each cross-section by time, ci,· = (ci,1, ci,2, . . . , ci,T )

′, then stacking the
cross-sections results in a NT × 1 vector, c = (c′1,·, c

′
2,·, . . . , c

′
N,·)

′.
The second example is a series of scalars with three indexes, di,t,j , which is used to construct

a vector of dimensions (T − 1) × 1 by stacking each cross-section and high-frequency by time,
di,·,j = (di,2,j , di,3,j , . . . , di,T,j)

′, then stacking the cross-section results in a N(T − 1) × 1 vector,
d·,·,j = (d′1,·,j ,d

′
2,·,j , . . . ,d

′
N,·,j)

′, and finally concatenating these high-frequency vectors to construct
the N(T − 1)×m matrix, D = (d·,·,1,d·,·,2, . . . ,d·,·,m).

Let Lt and Lj represent the lag-operators for t and j, respectively. For a given time-series vector,
di,·,j , applying Lt gives Ltdi,·,j = (di,1,j , di,2,j , . . . , di,T−1,j)

′. Applying Lj to the same vector gives,
Ljdi,·,j = (di,2,j−1, di,3,j−1, . . . , di,T,j−1)

′ for j = 2, 3, . . . ,m

Ljdi,·,1 = (di,1,m, di,2,m, . . . , di,T−1,m)′ for j = 1.

The lag-operator raised to an integer power indicates the number of times the lag-operator is applied,
for example Lt

pdi,t,j = di,t−p,j .

2 Panel framework with MIDAS regressors

Our proposed method introduces MIDAS regressors into a possibly dynamic panel framework. To
set focus, we consider a prototypical single-regressor model of the form:

yi,t = δyi,t−1 + βxi,t(θ) + ui,t, (1)

xi,t(θ) =
m∑
j=1

xi,t,jwj(θ), (2)

ui,t = µi + νi,t, (3)
where yi,t, i = 1, ..., n and t = 1, ..., T , are observed dependent variables for cross-sectional unit i and
time t, and xi,t,j , j = 1, ...,m, are high frequency explanatory variables. The latter are aggregated
into a covariate at frequency t using nuisance parameter dependent weights: wj(θ) thus refers to
these weighting functions whose functional form is assumed given up to the unknown parameter
θ ∈ Θ, where Θ denotes the relevant parameter space. Conformably, xi,t(θ) denotes the latent
regressor which we formally express as a function of θ.
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In the above, the lag coefficient δ may be pre-set to zero (we allow for a standard panel with
no dynamics). The regression disturbances conform with standard panel set-ups: with δ ̸= 0, µi ∼
iid(0, σ2µ), νi,t ∼ iid(0, σ2ν), and these two components are independent. In non-dynamic contexts,
the iid assumption on νi,t can be relaxed in which case clustering may be considered. Additional
exogenous or endogenous regressors may be included, which will of course affect estimation and
inference. In fact, our general framework can also be extended beyond the above homogenous
set-up and thus covers large N as well as large T motivated approaches.

In this paper, we follow Ghysels, Santa-Clara, and Valkanov (2004) and use the exponential
Almon lag polynomial of length H [Almon (1965)] defined as,

wj(θ) =

∏H
h=1 exp{jhθh}∑m

k=1

(∏H
h=1 exp{khθh}

) , (4)

where Θ = RH so θ ∈ RH , and the weights sum to one. The equal weights assumption corresponds
to θ = 0 that is

wj(0) =

∏H
h=1 exp{jh0}∑m

k=1

(∏H
h=1 exp{kh0}

) =
1

m
. (5)

The exponential Almon lag with only two parameters can describe a variety of patterns for the
weights. We thus set H = 2. Thus, θ ∈ R2 in our simulation design below, conforming with recent
practice, see Appendix in Ghysels (2016) and Ghysels, Sinko, and Valkanov (2007). Other weighting
functions, like the Beta distribution suggested in Ghysels et al. (2004), can also be used to construct
the high-frequency weights with some minor modifications and estimation implications.

In this paper, the high frequency observations are equally spaced, but this is not a restriction.
Ghysels, Sinko, and Valkanov (2007) discuss an implementation of irregularly spaced observations
(e.g., tick-by-tick stock price data) in terms of the Almon lag function. McKenzie (2001), Millimet
and McDonough (2017), and Sasaki and Xin (2017) find that irregular spacing means that the
model will need to be respecified taking the nonuniform sampling into consideration. The latter two
references correspond to GMM implementations; as such an appropriate specification test for the
identification of θ may be self-evident.

In addition to the advantages pointed out in Ghysels et al. (2006), the use of weighting functions
means that the high frequency observations, xi,t,j , will only intervene through the MIDAS aggre-
gation. In panel frameworks, this has two important implications. First, the resulting lags of the
MIDAS regressors are valid instruments in the standard panel IV setting, including the Arellano-
Bond case. Second, the standard properties of the first difference transformation are preserved
conditional on θ, if θ is specified. Our approach builds on these two properties.

In particular, for any given θ, (1) can be rearranged leading to a regression in first differences (in
t) where although unobserved heterogeneity, µi, is eliminated, ∆yi,t−1 remains endogenous unless δ
is pre-set to zero. For further reference let

∆ν(β, δ;θ) = ∆y − δ∆Lty − β∆x(θ) (6)
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refer to full set of difference error terms, where ∆x(θ) = (X − LtX)w(θ), where
X = (x·,·,1,x·,·,2, . . . ,x·,·,m),

x·,·,j = (x′
1,·,j ,x

′
2,·,j , . . . ,x

′
N,·,j)

′, and

xi,·,j = (xi,3,j , xi,4,j , . . . , xi,T,j)
′,

also X is a N(T − 2)×m matrix.
When β is zero, (1) is reduced to a dynamic panel model without regressors, which evacuates θ

from the regression equation. Even then, θ may remain in the estimating equations through another
channel, for example, when xi,t(θ) is used as an instrument. Global identification is nevertheless
compromised. This problem - which relates to the so-called Davies problem [Davies (1977, 1987)] -
can be succinctly stated as the case where nuisance parameters, θ, are not present under the null,
β = 0, but are present under the alternative, β ̸= 0. The methodology we propose next aims to
address this difficulty.

3 Methodology

Our approach involves an estimation method that is valid when θ is fixed to a known value, say θ0,
implying that the MIDAS aggregate, denoted as x(θ0) = Xw(θ0), is observable. In this context,
various asymptotically valid methods exist for dynamic panel models depending on the magnitudes
of N and T .

Assumption 1 In the context of (1)-(3) with θ = θ0 and where θ0 is specified, the following
statistics are available: (i) a test criterion, denoted t(β0;θ0), for which a p-value, denoted pt(β0;θ0),
can be obtained to assess

H01 : β = β0, for known β0 (given θ0), (7)
where β0 may or may not be 0, and (ii) a diagnostic criterion to assess the specification, denoted
J (θ0), such that under the H02 hypothesis of a correct specification for the given θ0 a p-value can
be computed that we denote as pJ (θ0).

Special cases of Assumption 1 include - as with the Arellano and Bond GMM method, which
we use below to set focus - a χ2 limiting null distribution for J (θ0) with known degrees-of-freedom,
and an asymptotically standard normal t(β0;θ0). More broadly, the null distributions in question
may depend on the given θ0 as would occur with, for example, bootstrap-based approaches.

We propose to build a confidence set for the MIDAS parameters by inverting the considered
J (θ0) test. For inference on β, we propose bound-tests for H01, as recommended in a general
setting by Dufour (1989), by maximizing pt(β0;θ0) [or minimizing t(β0;θ0) when relevant] over
θ0 ∈ Θ or within the retained confidence set.2

To illustrate the feasibility of the proposed strategy and to concretize concepts, the Arellano-
Bond framework provides a popular baseline case. So before we further formalize our general

2It is worth noting that Dufour (1989), which pre-dates the literature on MIDAS, did not consider dynamic panels.
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inference strategy, we start by examining the identification of θ through the Arellano-Bond moment
conditions. This is key for obtaining procedures that are accurately informative on θ.

3.1 The nuisance parameter problem and inference on θ

This section focuses, as a motivational analysis, on the GMM method of Arellano-Bond when
θ = θ0 and θ0 is specified. We are interested in the informational content of the underlying moment
conditions, to justify inverting a test based on the associated overidentifying restrictions test.

In this context, orthogonality conditions imply that there exists unique values of β and δ which
we define β(θ0) and δ(θ0) such that

E
[
W (θ0)

′∆ν(β, δ;θ0)
]
= 0, for β = β(θ0), δ = δ(θ0) and θ0 is specified, (8)

where W (θ0) refers to the considered instruments; importantly, appropriate lags of the aggregated
regressors can be used as instruments given θ0.3 The resulting (population) moment conditions
identify β and δ given θ0.

Consider two vectors, θ0 and θA, applied to (6) to give
∆ν(β, δ;θ0) = ∆y − δ∆Lty − β∆x(θ0), and (9)

∆ν(β, δ;θA) = ∆y − δ∆Lty − β∆x(θA). (10)
Combining these equations we obtain the following,

∆ν(β, δ;θ0) = ∆ν(β, δ;θA) + ∆η(β,θA,θ0), where (11)

∆η(β;θA,θ0) = (∆x(θA)−∆x(θ0))β = ∆X (w(θA)−w(θ0))β. (12)
We describe (12) as a discrepancy between the MIDAS aggregations. Clearly, if θA = θ0 or β = 0

then (12) evaluates to zero, and (11) simplifies to ∆ν(β, δ;θ0) = ∆ν(β, δ;θA). We exploit this
analytical separability in the derivations below.

For either given vector for θ, the values of β and δ are defined by,
E
[
W (θ0)

′∆ν(β, δ;θ0)
]
= 0, for β = β(θ0) and δ = δ(θ0) and (13)

E
[
W (θA)

′∆ν(β, δ;θA)
]
= 0, for β = β(θA) and δ = δ(θA). (14)

Here, differences between θA and θ0 can be analytically tracked, for β(θ0) ̸= β(θA) and δ(θ0) ̸=
δ(θA), so the discrepancy between moments comes from

E
[
W (θ0)

′∆ν(β(θA), δ(θA);θ0)
]
̸= E

[
W (θA)

′∆ν(β(θA), δ(θA);θA)
]
. (15)

Substituting (11) into the left-hand side of (15), using (14), and rearranging terms, illustrates two
separable moments:

E
[(
W (θ0)

′ −W (θA)
′)∆ν(β(θA), δ(θA);θA)]+ E

[
W (θ0)

′∆η(β(θA),θA,θ0)
]
̸= 0. (16)

The first moment suggests that information on the MIDAS parameter can accrue through the
instruments despite the Davies problem. Indeed, if the regression coefficient is zero then θ is not
present in the ∆ν(β(θA), δ(θA);θA) term nor in the ∆η(β(θA),θA,θ0) term, but is present inW (θ0)

and W (θA). The second moment can be shown to hold information on θ as long as the regression
coefficient is not zero, which is formalized in the following Theorem.

3Refer to (A.10) in the Appendix for definition of W (θ) constructed for the Arellano-Bond estimator.
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Theorem 1 (MIDAS Moment Condition Under the Alternative) Under the alternative of
θA ̸= θ0 where θ0 does not correspond to equal weights, the MIDAS weights for θA and θ0 must
differ for at least one weight, formally wl(θA) ̸= wl(θ0) for l ∈ (1, . . . ,m), then

wj(θA) (wl(θA)− wl(θ0)) ̸= 0 or wj(θ0) (wl(θA)− wl(θ0)) ̸= 0,

for at least one j and l combination. Thus unless β(θA) = 0, (12) entails
E
[
W (θ0)

′∆η(β(θA),θA,θ0)
]
̸= 0. (17)

In the Appendix, we develop the moment considered in this Theorem for the specific process we
examine in our simulation study. Overall, this analysis implies that a given θ0 can be tested using
the GMM overidentifying restrictions test that specifies θ0. The power of a test for a point that
is not the true value is obviously affected by the Davies problem, yet when the model is correctly
specified for the given θ0, the test will reject with level-correct asymptotic probability.

3.2 Identification-robust inference

Our discussion so far underscores an inevitable identification difficulty resulting from the Davies
problem in the considered MIDAS panel. In consequence, we consider a confidence set for θ obtained
by inverting a test that has adequate (asymptotic) level. The idea behind our choice of test, as
illustrated in the previous section, is to assess model fit when θ is specified.

Using the notation of Assumption 1, the confidence set in question can be defined as
CS(θ;α) = {θ0 ∈ Θ; pJ (θ0) > α} . (18)

Moving from the joint confidence region to individual confidence sets for the components of θ is
achieved by projecting this region, i.e. by computing, in turn, the smallest and largest values for
each parameter included in this region. Conceptually, a grid search, particle swarm, or simulated
annealing could be implemented over a meaningful set of values for θ. If the generated confidence
region is empty, the model can be considered rejected at the considered test level. We formalize this
result as follows.

Theorem 2 In the context of model (1)-(3) and Assumption 1, consider the confidence set defined
by (18) that inverts the statistic J (θ0) associated with H02, at the α level. Then

sup
θ0∈Θ

pJ (θ) ≤ α⇔ CS(θ;α) = ∅.

The intuition is that no value of θ - within the considered family - will aggregate the higher
frequency data into a model that passes the specification test at the considered level. This provides
a built-in specification check for the fit of the MIDAS structure within the considered panel set-up.

Now consider hypotheses of form H01. To test such hypotheses allowing for possible weak-
identification of θ, and identification failure when β0 = 0, we propose two different although related
tests defined by maximizing the p-value of the considered significance test over θ. The following
Theorem, again framed broadly in the context of Assumption 1, validates our reliance on these tests.
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Theorem 3 In the context of model (1)-(3) and using statistics as in Assumption 1, consider the
maximized p-values

p̂tA(β0) = sup
θ0∈Θ

pt(β0,θ0) and p̂tC(β0) = sup
θ0∈CS(θ;α1)

pt(β0,θ0).

Then for inference on H01 as in (7) the test with critical regions p̂tA(β0) ≤ α is asymptotically valid
at the α level, whereas the test with critical region p̂tC(β0) ≤ α2 is asymptotically valid with level
not exceeding α1 + α2.

If CS(θ;α1) is informative, the test based on p̂tC(β0) may outperform its counterpart despite
the level correction. It is thus useful even if θ is treated as a nuisance parameter to consider the
confidence set approach.

Pursuing the above GMM example is useful to concretize our approach. While other speci-
fication checks may be used, H02 can be assessed using the usual over-identification test, which
we denote for further reference as the modified-Sargan test. This test concretely assesses whether
given θ = θ0 there exist values of β and δ [which we denote β = β(θ0) and δ = δ(θ0)] such that
E [W (θ0)

′ξ(β(θ0), δ(θ0);θ0)] = 0. In line with our general set-up, denote this statistic as J (θ0).
Then under H02 and correct specification

J (θ0) = (∆ν̃(θ0))
′W (θ0)[ṼN (θ0)]

−1W (θ0)
′(∆ν̃(θ0)) ∼

N→∞
χ2(τ −K − 1), (19)

where the ‘tilde’ indicates an estimate from the GMM second step, τ is the number of instruments in
W (θ0), K = 2 (counts the exogenous regressor and the lagged endogenous variable), the weighting
matrix is defined as

ṼN (θ0) =

N∑
i=1

W ′
i (θ0)(∆ν̃i,·(θ0))(∆ν̃i,·(θ0))

′Wi(θ0), (20)

and Wi(θ0) represent the (T − 2)× τ submatrix of instruments for the ith cross-section.
Our proposed confidence set which inverts this test can thus be expressed as

CS(θ;α) = {θ0 ∈ Θ;J (θ0) < χ2
α(τ −K − 1)}, (21)

where χ2
α(τ −K − 1) is the critical point associated with (19). An alternative set can be derived

using e.g. tests for missing dynamics, as considered in our empirical analysis. Now under the
same conditions that validate (19), the standard Wald-type statistic is also valid for testing linear
hypotheses on β if θ was given. The above-defined test for unknown θ can thus be defined using
the following statistics:

tA(β0) = inf
θ0∈Θ

t(β0;θ0), (22)

tC(β0;α1) = inf
θ0∈CS(θ;α1)

t(β0;θ0), (23)

where t(β0;θ0) is the two-tailed (that is absolute value) t-statistic fixing θ to θ0, Θ is the parameter
space and CS(θ;α1) is the above defined confidence set for θ with level α1.
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4 Simulation Study

The simulations are drawn based on model (1)-(3). The design we consider for the exogenous
regressors is as follows,

X = ψ ⊗ ι′m + ρLtX +E, (24)
where E is a N(T − 2)×m matrix of ϵi,t,j ∼ N(0, σ2ϵ ), drawn independently from µi and νi,t. The
regressor DGP matches the high-frequency covariance structure, (D.1) and (D.2), of the special case
described in Appendix D. This allows for a direct comparison between the simulation results and
the derivations. The MIDAS regressor generated from (24) gives

x(θ) =Xw(θ) = ψ ⊗ ι′mw(θ) + ρLtXw(θ) +Ew(θ),

and the first difference (in t) thus yields:
∆x(θ) = ρ∆LtXw(θ) + ∆Ew(θ). (25)

This design preserves the high frequency autoregressive structure for the MIDAS aggregate, and
allows us to remain (in t) close to the simulation designs adopted in the literature on the Arellano-
Bond estimator.

With the exception of θ, the null model parameters are taken from the Arellano and Bond (1991)
design, which provides a degree of comparability. So the null model parameters4 are: δ = 0.5,
β = 1.0, ψi = 0, and ρ = 0.8. The case of ψi = 0 assumes that there are no fixed effects in the
MIDAS regressor. The simulations draw from the standard normal distribution for each of the
error terms, so µi ∼ N(0, σ2µ), νi,t ∼ N(0, σ2ν) and ϵi,t,j ∼ N(0, σ2ϵ ), with variances set to: σ2µ = 1,
σ2ν = 1, and σ2ϵ = 0.9. Bun and Windmeijer (2010) show that the variance ratio (σ2µ/σ2ν) affects the
consistency of the GMM estimates, however we maintain the Arellano and Bond (1991) design to
ensure comparability. As discussed in Section 3.1, our approach is robust to alternative estimators
that do not suffer from the variance ratio problem. To avoid the instrument proliferation problem,
we apply the correction of Roodman (2009), which reduces the number of instruments so τ = 2T−1.

This study uses a two-parameter exponential Almon weights, θ = (θ1, θ2)
′, with five different

assumptions.

• θA = (0, 0)′ - flat weights or arithmetic average.

• θB = (0.1,−0.2)′ - rapid decay with more weight on recent observations.

• θC = (0.03,−0.02)′ - slow decay with relatively more weight on recent observations.

• θD = (−0.06, 0.01)′ - slow increase with relatively more weight on older observations.

• θE = (−0.04, 0.02)′ - rapid increase with relatively more weight on older observations.

The parameter space, Θ = {(|θ1| ≤ 1), (|θ2| ≤ 1)}, encompasses nearly all possible weighing
schemes of a two-parameter exponential Almon lag. The extreme cases may be of importance in

4In their paper, alternative values of δ were examined, 0.2 and 0.8.
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economic contexts, like government-issued cheques (direct deposit set for the first of the month),
stock market opening and midday effects, and rental housing payment due the first of the month.
The number of high frequency observations is chosen to reasonably approximate high frequency
data, where m = 20 unless specified in the table.

Results in Tables 1-4 report the size and power of our proposed test for H02 : θ = θ0. Since
this test is designed for inversion purposes, in addition to the natural special equal-weights case,
that is θ0 = 0, we consider various choices for θ0. Table 1 shows that our procedure exhibits size
control for all considered null values. Outside of the equal weight setting, the results could be
considered modestly undersized, which is a consequence of implementing the Sargan statistic as the
specification test. The Sargan is an asymptotic method, and, as such, can result in size distortions
in finite samples.

It is important to recall that estimation uncertainty on θ is inherent to the model, because of
its definitional identification problem. This further explains why power results differ importantly
with θ0, as illustrated in Section (3.1). Also, it is broadly known in the general GMM literature,
the information content of the Sargan statistics depends importantly on the sample size. The
important question is whether allowing for non-equal weights eventually pays-off for inference on
β acknowledging that information on θ may be imprecise. Interestingly, our results support this
conclusion, with reasonable sample sizes. In summary, our size study has shown that no spurious
inference would result from allowing uncertainty around θ.

In Table 2, the tested hypothesis is θ0 = 0; the DGP is drawn using various choices for θ reported
in the first and second column. Power is consistent with conventional wisdom as it increases in both
N and T . On balance, this table shows that our Sargan statistic can reliably disentangle equal
weights from a MIDAS alternative as N increases, except for small T . Recall that information on
θ more or less accrues via the time series dimension of the model. Our findings with T = 10 are
thus noteworthy. These results should be assessed given our findings on testing β [reported below].
This table also demonstrates the power improvements as the weights become more extreme, so Case
2 applies. The model is able to discriminate against equal weights because At,r is non-zero and
w′(θA)w(θA) will approach one as weighting schemes become more extreme.

In Table 3 and 4, we study power when the tested null hypothesis is one or the other boundary
of the Almon function. We aim to assess whether the Sargan test can detect extreme opposite
weighting schemes. Results line up with our analysis for the equal weights null: a small T would not
suffice for the test to be informative, yet good power can be achieved as T approaches 15. Power also
changes asymmetrically as θ deviates from the null. For a pair of parameter values, it is possible to
contrast the power results when the null is equal weights tested against alternative values of θ, with
results corresponding to the opposite design where the null is not equal weights and the alternative
is equal weights. The natural null hypothesis to be considered here is that of equal weights, and our
results confirm good performance in this case the converse.

Power responds more to deviations of θ2, which is a consequence of the “j2” part of the Almon
function. More details are provided in the Appendix tables confirming the asymmetric power be-
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Table 1: Rejection Frequency under the Null

Weight DGP & Null N = 500 N = 1000

θ1 θ2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

older -0.04 0.02 0.036 0.036 0.039 0.035 0.037 0.042
⇑ -0.06 0.01 0.042 0.034 0.044 0.035 0.046 0.035

equal 0 0 0.041 0.051 0.041 0.052 0.042 0.043
⇓ 0.03 -0.02 0.042 0.049 0.040 0.046 0.053 0.050

recent 0.1 -0.2 0.028 0.051 0.049 0.020 0.046 0.042
m = 20, which coincides roughly with the number of trading days in a month.

Table 2: Rejection Frequency with θ0 = (0, 0)′

Weight DGP N = 500 N = 1000

θ1 θ2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

older -0.04 0.02 0.060 0.242 0.472 0.275 0.680 0.968
⇑ -0.06 0.01 0.043 0.077 0.091 0.077 0.109 0.225

equal 0 0
⇓ 0.03 -0.02 0.044 0.078 0.082 0.062 0.073 0.127

recent 0.1 -0.2 0.068 0.655 0.866 0.161 0.597 0.944
m = 20, which coincides roughly with the number of trading days in a month.

tween θ1 and θ2. There is no reason to expect symmetry in power between each parameter, since
the confidence set we propose is not a symmetric interval. Globally, these results confirm the diffi-
culty of identifying θ and the time-series roots of the MIDAS problem: the more time series data is
available the more information on θ will accrue yet perfect identification is not to be expected. Con-
figurations that are more skewed than the true DGP model can be tested more reliably, and values
of θ that induce an important effect on the aggregated variable can be disentangled with sufficient
data. Consequently, the concrete question that matters is whether possibly weak information on θ
has significant costs regarding inference on β. We thus examine this question in what follows.

The autoregressive structure can also deviate from our Special Case, and we examine this effect
by implementing our approach with a high-frequency autoregressive (hfAR) model of order one,
refered to as hfAR(1). The autoregressive relationship is between j and j − 1, which is discussed in
Appendix A in regards to the model and implications of aggregation. The simulation results, shown
in Table E6, do not change our findings or conclusions.

We thus now turn our attention to inference on β. Tables 5 and 6 report two sets of results:
(i) tests which assume that θ = θ0 we refer to as the “oracle” method (do not minimize over Θ);

Table 3: Rejection Frequency with θ0 = (1, 1)′, w20(θ0) = 1

Weight DGP N = 500 N = 1000

θ1 θ2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

older -0.04 0.02 0.046 0.051 0.063 0.030 0.043 0.060
⇑ -0.06 0.01 0.059 0.077 0.101 0.057 0.121 0.168

equal 0 0 0.06 0.058 0.06 0.047 0.038 0.092
⇓ 0.03 -0.02 0.049 0.067 0.091 0.067 0.096 0.247

recent 0.1 -0.2 0.065 0.144 0.259 0.122 0.361 0.755
m = 20, which coincides roughly with the number of trading days in a month.
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Table 4: Rejection Frequency with θ0 = (−1,−1)′, w1(θ0) = 1

Weight DGP N = 500 N = 1000

θ1 θ2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

older -0.04 0.02 0.062 0.192 0.738 0.031 0.510 0.987
⇑ -0.06 0.01 0.070 0.06 0.088 0.038 0.117 0.235

equal 0 0 0.054 0.055 0.048 0.034 0.054 0.086
⇓ 0.03 -0.02 0.055 0.049 0.045 0.05 0.083 0.126

recent 0.1 -0.2 0.061 0.038 0.028 0.051 0.049 0.060
m = 20, which coincides roughly with the number of trading days in a month.

Table 5: Rejection Frequency for β0 = 0†

Weight θ t(β0) at 2.5% level
θ1 θ2 β = −2 β = −1 β = −0.5 β = 0 β = 0.5 β = 1 β = 2

older 0 0.1 0.999 0.996 0.956 0.009 0.954 0.997 1
⇑ 0 0.05 0.998 0.993 0.938 0.010 0.929 0.990 1

equal 0 0 0.513 0.523 0.559 0.006 0.551 0.517 0.530
⇓ 0 -0.05 1 1 0.989 0.005 0.990 1 1

recent 0 -0.1 1 1 0.989 0.005 0.991 1 1
inf t(β0) at 2.5% level

CS(θ; 2.5%) 0.461 0.391 0.120 0.010 0.114 0.382 0.444
†The simulation settings are based on more high frequency observations, m = 40, and the panel dimension
is relatively low at T = 5 and N = 500. The final row takes into account the confidence set for θ at a 2.5%
level. The DGP is θ = 0 and β = 0.

(ii) the “consistent-set” counterpart, that is, the test based on tC(β0) = infθ∈CS(θ;α1) t(β0;θ). The
above described Sargan test is inverted to construct CS(θ;α1) and we set α1 = α2 = 2.5%. This
experiment is implemented with T = 5 which is the least favorable scenario on the usefulness of the
pre-test confidence set. When the DGP matches the null, the method is able to control the 2..5%
level of the t-test but the small sample leads to undersized rejection frequencies when β = 0 and
marginally oversized when β = 2.

Comparing Table 5 to Table 6 allows us to analyze the Davies problem. In the former, the null
we test corresponds to β0 = 0 and in the latter to β0 = 2. The power of the oracle test varies
with θ, which may also be interpreted along the following important dimension: spurious inference
on β may result if we misspecify θ. In contrast, we see that the bound test almost matches the

Table 6: Rejection Frequency for β0 = 2†

Weight θ t(β0) at 2.5% level
θ1 θ2 β = −1 β = −0.5 β = 0 β = 0.5 β = 1 β = 2 β = 3 β = 4

older 0 0.1 1 1 1 0.999 0.997 0.019 0.991 1
⇑ 0 0.05 0.998 1 1 0.997 0.988 0.029 0.988 1

equal 0 0 0.949 0.987 0.988 0.924 0.523 0.094 0.076 0.135
⇓ 0 -0.05 1 1 1 1 1 0.018 0.999 1

recent 0 -0.1 1 1 1 1 1 0.003 1 1
inf t(β0) at 2.5% level

CS(θ; 2.5%) 0.950 0.987 0.988 0.925 0.595 0.010 0.423 0.496
†The simulation settings are the same as Table 5, except the DGP is θ = (0, 0.05)′ and β = 2.
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oracle power when β0 = 2, and the cost of accounting for an unknown θ is not large when β0 = 0.
This is the worst-case scenario since T = 5, so we should except some power discrepancy from the
(infeasible) oracle test. It is important to highlight that power is symmetric in the case of β0 = 0

and asymmetric when β0 = 2, since the former does not depend on θ. This shows that the method
holds concrete promise particularly as we weigh-in the misspecification test of falsely fixing θ. It
should be noted that the oracle test is conservative

Overall, results confirm the usefulness of testable information on the equal weights and zero
β null hypothesis, which would concretely produce unbounded confidence regions. The latter, in
addition to empty outcomes reveal misspecification that should be flagged empirically.

5 Empirical Analysis

We demonstrate the use of our methodology with an empirical application. The example that we
focus on is a study by Obstfeld, Shambaugh, and Taylor (2010) which presents a model to explain the
recent rapid accumulation of international reserve holdings (notably by emerging economies). The
authors argue that nowadays an important part of reserve holdings is a hedge against international
financial shocks since the latter can cause important damage to the domestic financial sector and the
country’s currency. They support their views based on the outcomes of a panel OLS regression with
annual data and error clustering. In particular, they find that the explanatory variables representing
financial openness and depth are both significant, important, and they have the correct signs. On
the other hand, only a few of the traditional variables are found to be significant.

The exchange rate volatility, defined as the standard deviation of equally-weighted monthly
changes over the year, is among these traditional regressors. We investigate whether the aggregation
manner of these monthly exchange rate observations affects the obtained results. Our examinations
are conducted in the context of the general specification dubbed ‘Horserace’ in Tables 1 and 2 of
Obstfeld et al. (2010), and which includes regressors suggested by traditional theories, as well as
variables representing financial openness and financial depth.

We collect monthly data on the exchange rate for as many countries in the original study as
possible.5 This monthly data is used in conjunction with the original annual data on the remaining
regressors of the model. We consider the OLS specification from Obstfeld et al. (2010) utilizing
the average exchange rate volatility, and another specification that allows for MIDAS weights.6

Specifically for MIDAS weights, we minimize the clustered-standard-error-corrected t-statistic over
the full MIDAS parameter space, as in (22). The results are presented in the last two columns of
Table 7 (for all countries), and Table 8 (for the emerging country subset).

From Table 7, we see that estimates and associated p-values are largely similar across the two
OLS specifications except in the case of the exchange rate volatility; this coefficient is highly signifi-

5As these were not available for all of the countries considered in the original study, our observations are fewer
than those reported in their Tables 1 and 2.

6For ease of exposition, we omit the dummy terms present in the original model specifications.
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cant with equal-weight aggregation (p-value of zero) but insignificant with MIDAS weights (p-value
of 1). The same outcome is observed when we consider only the subset of emerging countries in our
sample. Table 8 shows that the significance of the exchange rate volatility coefficient is reversed
when MIDAS weights are used instead of equal weights. Clearly, the aggregation scheme matters
regarding the importance of the role of exchange rate movements.

Table 7: Estimates with Alternative Aggregation Schemes; All Countries

Arellano-Bond OLS
Specifiation Equal Weights MIDAS UMIDAS Equal Weights MIDAS

Lag ln(Reserves/GDP) 0.771 0.773 0.769
(.000) (.000) (.000)

ln(Population) -0.009 0.000 0.020 -0.037 -0.036
(.011) (.992) (.000) (.344) (.356)

ln(trade/GDP) 0.055 0.027 – 0.683 0.677
(.000) (.000) (.000) (.000)

ln(GDP/person) -0.059 0.001 -0.114 -0.152 -0.151
(.000) (.167) (.000) (.008) (.007)

Exchange Rate Volatility 0.000 0.000 Included but -0.000 0.000
(.000) (.988) not reported (.000) (1.000)

Financial Openness 0.008 -0.000 -0.242 0.301 0.296
(.272) (.982) (.000) (.227) (.230)

Financial Depth 0.185 -0.000 0.058 0.316 0.314
(.000) (.814) (.000) (.000) (.000)

Observations 1588 1588 1588 1633 1633
Missing Dynamics p-value 0.679 0.732 0.669 0.000 0.000
# instruments 170 170 445
Sargan p-value 0.000 0.000 0.311
Sargan df 162 162 426

Note 1: Values in parentheses are p-values. In addition to the lagged term, the Arellano-Bond GMM
instruments include current and lags of the covariates. Estimates and p-values under the MIDAS heading
correspond to inf t-statistics as follows. For the Arellano-Bond case, the GMM-t statistic is minimized over
a confidence set for the MIDAS parameter, as in (21). The underlying confidence set inverts the GMM
Sargan statistic at the 2.5% level. For the OLS case, the clustered standard error corrected t-statistic is
minimized over the full MIDAS parameter space as in (20). The missing dynamics p-value corresponds to
the sup p-value over the considered MIDAS confidence set in GMM, and the full parameter space for OLS.
Note 2: Results are from an unbalanced panel of 120 countries with annual data ranging from 3 to 25
years.

The original OLS setting employs clustered standard errors to account for serial correlation
(Bertrand, Duflo, and Mullainathan (2004)). This approach is valid, however if the model is gen-
uinely dynamic (lagged dependent) then clustering can be insufficient. In the context of this analysis,
some countries adjust their reserve holdings based on announced criteria or rule-based programs,
both of which suggest that these countries may have some form of target for their reserve holdings.
This may explain why current reserve holdings react to genuine dynamics in holdings; see Domanski
et al. (2016). This motivates us to consider a genuinely dynamic panel model and implement the
Arellano-Bond estimator.

We move to a dynamic specification with the existing regressors and conduct an Arellano-
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Bond GMM estimation. The exchange rate volatility variable is included among the regressors
in three ways: aggregated with equal weights, aggregated via MIDAS weights, and the UMIDAS
specification. Results are presented in the first three columns of Tables 7 and 8. The p-values of the
estimates are reported in the top panel and correspond to the GMM-t statistic that is minimized
over a confidence set for the MIDAS parameter, as in (23). In the lower panel we report the GMM
Sargan statistic p-value, and the supremum p-value for MIDAS weights at the 2.5% level.

We observe that the coefficient on the lag of the dependent variable is significant and large in
magnitude. Combined with the test for missing dynamics that is insignificant, means that this
setting accounts for genuine dynamics or serial correlation. This allows us to return focus on the
parameters of interest from the original OLS specification.

When considering all the countries in our sample, the UMIDAS is the only specification not
rejected by the Sargan test, whereas with the emerging country subset, only the MIDAS model
survives at the 5% level.7 This implies that the aggregation method matters importantly.

Looking more closely at the results of the UMIDAS in Table 7, we see that while some of the
traditional variables still play a significant role in determining reserve holdings, financial depth and
financial openness are also relevant for the latter. However, although the former has the expected
sign, its estimated importance is found to be much smaller compared to its OLS counterparts.
On the other hand, the sign of the financial openness coefficient is opposite to that expected.8

Interestingly, the OLS-MIDAS specifications yield insignificant outcomes for the estimated coefficient
of the financial openness variable.

Turning to the MIDAS results pertaining to the subset of emerging economies (Table 8), we find
some differences compared to the all-country case. In particular, while several traditional variables
again play a role in the evolution of reserve holdings, we observe that the financial depth variable
is no longer significant. One explanation may be that the relative solidity of the financial sector in
emerging countries is not sufficiently important to adequately buffer against (important) external
financial shocks. In addition, and as in Table 7, while the estimate of the financial openness variable
is significant, it has a negative sign. This contrasts with the large values and positive signs obtained
for this coefficient in the OLS settings.

Our method also conveys information on the estimated MIDAS aggregation weights. In Figure
1 we provide a graphical representation of least rejected values for the obtained weights; the impli-
cations of the rejected values at the 5% level are discussed further below. The figure allows a direct
reading of weights for each month of the year, with the graphs representing the wj(θ) associated
with the supremum Sargan p-values, and the equal-weights case (1/12 for each month).

7One reason why the UMIDAS is rejected in the latter case may be that the ratio of instruments to observations
is large.

8Generally, we would expect greater financial openness to be associated with a higher crisis vulnerability and
therefore a greater demand for reserves. At the same time, a more flexible exchange rate reduces the demand for
reserves given that central banks do not need large reserves to manage their exchange rate. Ultimately, the net effect
has to be measured empirically. In addition, if the financial openness variable and the exchange rate volatility variable
reflect largely similar information, there could be a transfer of coefficient signs; the exchange rate volatility coefficients
are not reported to save space.
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Table 8: Estimates with Alternative Aggregation Schemes; Emerging Countries

Arellano-Bond OLS
Specifiation Equal Weights MIDAS UMIDAS Equal Weights MIDAS

Lag of ln(Reserves/GDP) 0.636 0.588 0.860
(.000) (.000) (.000)

ln(Population) -0.127 0.000 0.494 -0.030 -0.022
(.780) (1.00) (.660) (.634) (.724)

ln(trade/GDP) 0.216 0.072 -0.394 0.439 0.437
(.410) (.688) (0.603) (.004) (.002)

ln(GDP/person) 0.230 0.277 0.261 0.036 0.000
(.002) (.002) (.073) (.691) (0.719)

Exchange Rate Volatility 0.161 0.130 Included but 0.064 0.000
(.000) (.016) not reported (.024) (0.999)

Financial Openness -0.728 -0.388 -1.052 0.770 0.763
(.002) (.021) (.192) (.035) (.030)

Financial Depth 0.306 0.242 -0.022 0.480 0.469
(.100) (.175) (.925) (.001) (.000)

Observations 456 456 456 466 466
Missing Dynamics p-value 0.446 0.924 0.532 0.000 0.000
# instruments 170 170 408
Sargan p-value 0.073 0.202 0.029
Sargan df 162 162 389

Note: Refer to Note 1 from Table 7. Results are from an unbalanced panel of 46 countries with annual
data ranging from 9 to 25 years.

Figure 1(a) corresponds to the results in Table 7 which reports that the supremum Sargan
p-value rejects the model for all values of θ at almost any significance level. We thus see that
both the (least-rejected) MIDAS weights, and the average weight scheme, are rejected. Figure 1(b)
corresponds to the outcomes reported in Table 8, and where the model is not rejected for a subset
of θ. In this case, the graph shows that the information that pertains to the exchange rate volatility
variable, and which is relevant for explaining reserve holdings, essentially accrues over the period
extending from the end of the second quarter of the year through to its third quarter.

One way to interpret the above results is that the equal weights assumption is supported at the
5% level but rejected at levels above 7.3%. Nevertheless, in view of the sample size, the MIDAS
analysis should not be dismissed in favour of a hasty conclusion based on 5% cut-offs. At the 5%
level, the modified-Sargan rejects the model when the weights deviate significantly from the point
estimate weights. Given that the retained θ are a subset of the θ parameter space, this demonstrates
that our power results are viable in empirical settings.

Recalling the required level adjustment, we observe that the lag regressor, per capita GDP,
exchange rate volatility, and financial openness remain significant at 10% level. Again, in view of
the sample size, this cut-off is reasonably cautious. Both average and MIDAS weights models are
retained, although the least rejected model deviates significantly from the equal weights case (see
Figure 1(b)).

As for the resulting policy implications, given that decision makers in central banks convene
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Figure 1: MIDAS weights for supremum Sargan Statistic
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periodically to make adjustments to their reserve holdings, such information can be useful with
regard to the period of the year over which they should take account of exchange rate movements
more particularly, as well as for deciding on appropriate timings of central bank interventions.

Taken collectively, our results demonstrate the relevance of considering genuinely dynamic
model. Our results also show that different weighing schemes of exchange rate volatility can change
drastically a major result.

6 Concluding Remarks

Our proposed method introduces MIDAS regressors into the context of dynamic panel data models.
We show that a specification test can be inverted for inference on MIDAS parameters. An empty
confidence set indicates a lack of fit of the imposed model. Our theoretical results are paralleled
in a simulation study, which demonstrates level control, local power for alternatives with similar
weighing schemes, and power against an equal weight assumption.

We apply the proposed methodology to revisit the results of Obstfeld, Shambaugh, and Taylor
(2010) that try to explain the rapid accumulation since the nineties of international reserve holdings.
An important variable of the model that requires aggregation is exchange rate volatility. Our findings
underscore the usefullness of our proposed data driven aggregations scheme.

More broadly, this paper sets a promising template for dealing with shrinkage parameters or
methods, in general, when unrestricted estimation is not desirable nor even possible. Specification
checks in general hold concrete information on shrinkage parameters, that can be harvested to
formally identify intervening parameters.
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A Recursion and Instruments

The model dynamic panel model with MIDAS covariates, defined by (1) – (3), can be written as,
yi,t = δyi,t−1 + xi,t(θ)β + vi,t + µi, (A.1)

and via recursion to obtain:

yi,t = δtyi,0 +

(
t−1∑
k=0

δkLt
kxi,t(θ)

)
β +

t−1∑
k=0

δkLt
kνi,t + µi

t−1∑
k=0

δk. (A.2)

Assuming the model initiated in the distant past, then the culmination of this past can be represented
by the unobserved value, yi,0. We assume for all high frequency observations, j, k = 1, . . . ,m, the
following:

E[yi,0xi,t,j ] = 0 ∀ t, (A.3)

E[νi,txi,s,j ] = 0 ∀ t, s and (A.4)

E[µixi,t,j ] = E[µixi,s,k] ∀ t, s, (A.5)
where the first two assumptions assume strict exogeneity, the latter assumption allows for correlation
between the regressor and the unobserved heterogeneity.

The instrument matrix is constructed from y’s and x(θ)’s in a block diagonal matrix form, where
each block is indexed by s = 3, . . . , T , so let

zi,s := zi,s(y, x;θ) = (zi,s(y), zi,s(x;θ)) where (A.6)

zi,s(y) = (yi,1, . . . , yi,s−2) and (A.7)

zi,s(x;θ) = (xi,1(θ), xi,2(θ), . . . , xi,s(θ)). (A.8)
The instruments in each block are functions of the observed data and θ, so we denote the instrument
matrix as W (θ). The matrix of instruments for each i is denoted Wi(θ) takes the following form,

Wi :=Wi(θ) = (Wi(y), Wi(x,θ)) where (A.9)

Wi(y) =


zi,3(y) 0 0 0

0 zi,4(y) 0 0

0 0
. . . 0

0 0 0 zi,T (y)

 and

Wi(x,θ) =


zi,3(x;θ) 0 0 0

0 zi,4(x;θ) 0 0

0 0
. . . 0

0 0 0 zi,T (x;θ)

 .
Wi is a (T − 2)× τ matrix, where τ is a function of T and the number of exogenous regressors (K).
The full matrix of instruments, for all i, is

W (θ) = (W ′
1(θ), . . . ,W

′
N (θ))′ = (W (y), W (x,θ)) where (A.10)

W (y) = (W ′
1(y), . . . ,W

′
N (y))′ and (A.11)

W (x,θ) = (W ′
1(x,θ), . . . ,W

′
N (x,θ))′. (A.12)

W (θ) is a matrix with dimensions N(T − 2) × τ . The instrument matrix can be constructed in
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this manner for any given value of θ, since the MIDAS aggregate is then observable so θ0 will yield
W (θ0) and θA will yield W (θA).

B Proofs

Proof of Theorem 1. The population moment (17) used to indicate power in terms of θ can be
defined as

E
[
W (θ0)

′∆η(β(θA),θA,θ0)
]
=

[
A
B

]
where (B.1)

A = E
[
W (y)′∆η(β(θA),θA,θ0)

]
and (B.2)

B = E
[
W (x,θ0)

′∆η(β(θA),θA,θ0)
]
. (B.3)

This exploits the separability of W (θ) into a set of instruments from lags of the dependant variable
and a set from the aggregated regressor. From these we can examine each row of A and B, by
formally considering the instruments separately:

At,r := E
[
Lt

ry′·,t∆η(β(θA),θA,θ0)
]

, and (B.4)

Bt,q := E
[
Lt

qx′
·,t(θ0)∆η(β(θA),θA,θ0)

]
, (B.5)

where r = 2, . . . , t−1 and q = 0, . . . , t−1. For reference below, we define these the MIDAS moments,
which captures the information coming from to deviations between the MIDAS regressors based on
θ0 and θA.

To simplify the following derivations, the covariance of high frequency exogenous observations
is defined as,

Γ(q, p) = E
[
x′
·,t,j(Lt

qLj
px·,t,j)

]
, (B.6)

where q and p are the differences between the low-frequency and high-frequency time indexes,
respectively.9

Substitute in (A.2) into At,r to obtain,

At,r = E

[
N∑
i=1

Lt
ryi,t∆ηi,t(β(θA);θA,θ0)

]

= E

[
N∑
i=1

δt−ryi,0∆ηi,t(β(θA);θA,θ0)

]

+E

[
N∑
i=1

(
t−r−1∑
k=0

δkLt
r+kxi,t(θA)

)
β(θA)∆ηi,t(β(θA);θA,θ0)

]

+E

[
N∑
i=1

(
t−r−1∑
k=0

δkLt
r+kνi,t

)
∆ηi,t(β(θA);θA,θ0)

]

+E

[
N∑
i=1

(
µi

t−r−1∑
k=0

δk

)
∆ηi,t(β(θA);θA,θ0)

]
, (B.7)

9The variance at the high and low frequency are given by Γ(q, p) = Γ(0, 0) for covariance stationary series.
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where under assumptions (A.3), (A.4) and (A.5) only the second term is nonzero. Substituting the
definition of ∆ηi,t(β(θA);θA,θ0) into the second term, and rearrange terms to obtain,

At,r = E

[
N∑
i=1

(
t−r−1∑
k=0

δkLt
r+kxi,t(θA)

)
(xi,t(θA)− xi,t(θ0))

]
β(θA)

2

−E

[
N∑
i=1

(
t−r−1∑
k=0

δkLt
r+kxi,t(θA)

)
(xi,t−1(θA)− xi,t−1(θ0))

]
β(θA)

2. (B.8)

Applying (B.6) and rearranging terms leads to

At,r =

t−r−1∑
k=0

δk
m∑
j=1

m∑
l=1

Γ(r + k, j − l) (wj(θA)wl(θA)− wj(θA)wl(θ0))

β(θA)
2

−

t−r−1∑
k=0

δk
m∑
j=1

m∑
l=1

Γ(r + k − 1, j − l) (wj(θA)wl(θA)− wj(θA)wl(θ0))

β(θA)
2,(B.9)

which further simplifies to,

At,r =

 m∑
j=1

m∑
l=1

Γ(r − 1, j − l)wj(θA) (wl(θA)− wl(θ0))

β(θA)
2

+ (1− δ)

t−r−1∑
k=0

δk
m∑
j=1

m∑
l=1

Γ(r + k, j − l)wj(θA) (wl(θA)− wl(θ0))

β(θA)
2. (B.10)

Similar substitutions, rearrangements, and assumptions when applied to (B.5) will give,

Bt,q =

 m∑
j=1

m∑
l=1

(Γ(q, j − l)− Γ(q + 1, j − l))wj(θ0) (wl(θA)− wl(θ0))

β(θA). (B.11)

The above shows that Theorem (1) can be equivalently expressed in terms of (B.10) and (B.11).
So proving Theorem (1) involves demonstrating,

At,r ̸= 0 or Bt,q ̸= 0. (B.12)
The weights from either θ must sum to one, so a single deviation in a representative weight

must result in a deviation in at least one other weight. It is clear from wl(θA) ̸= wl(θ0) that
(wl(θA)− wl(θ0)) ̸= 0 and either wj(θA) ̸= 0 or wj(θ0) ̸= 0 so the product must be non-negative for
at least one j and l combination. When θ0 corresponds to equal weights, then the double summation
of wj(θ0) (wl(θA)− wl(θ0)), in (B.11), evaluates to zero independent of the θA-based weights. The
above proves that (B.12) holds under these assumptions. So the trivial case of Γ(0, 0) ̸= 0 ensures
Bt,q ̸= 0 when q = 0.

Proof of Theorem 2. Because the cut-off point χ2
α does not vary with θ, we have:

inf
θ0

J (θ0) > χ2
α ⇐⇒ J (θ) > χ2

α,∀θ ∈ Θ ⇐⇒ CS(θ;α) = ∅. (B.13)

Proof of Theorem 3. Under assumption (1), the t-test that fixes θ is asymptotically valid
in the sense that the underlying estimator is asymptotically normal and its variance covariance is
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consistently estimated given θ for large N . If follows that
inf

θ0∈Θ
t(β0;θ0) > tc(α) ⇔ t(β0;θ) > tc(α) for any θ ∈ Θ. (B.14)

In the same vein
inf

θ0∈CS(θ0;α1)
t(β0;θ0) > tc(α2) ⇔ t(β0;θ) > tc(α2) for any θ ∈ CS(θ;α1).

C MIDAS Data Generating Process

Taking the first difference of a MIDAS regressor implies a specific structural form of the underlying
data generation process. The first formulation of the high frequency observations defines a relation-
ship between the jth observation in period t and the jth observation in period t− 1, we repeat here
(24) for a given i, t and j: xi,t,j = ψi + ρLtxi,t,j + ϵi,t,j .

The MIDAS regressor generated gives:

xi,t(θ) =
m∑
j=1

wj(θ)xi,t,j (C.1)

= ψi + ρ
m∑
j=1

wj(θ)Ltxi,t,j +
m∑
j=1

wj(θ)ϵi,t,j . (C.2)

The first difference (in t) of this MIDAS regressor from (24) gives (25), repeated here:

∆xi,t(θ) = ρ
m∑
j=1

wj(θ)∆Ltxi,t,j +
m∑
j=1

wj(θ)∆ϵi,t,j .

The second formulation is a predetermined relationship between the j and j − 1 observations in
period t, given by:

xi,t,j = ψi + γLjxi,t,j + ϵi,t,j . (C.3)
To obtain the first difference in t of this formulation of the high frequency observations, we begin
with recursion of the series to obtain,

xi,t,j = ψi

m−1∑
k=0

γk + γmLtxi,t,j +

[
m−1∑
k=0

γkLj
kϵi,t,j

]
, (C.4)

where the bracketed part is a moving average error term, denoted ei,t,j(γ).
The MIDAS aggregation from (C.4) gives:

xi,t(θ) =
m∑
j=1

wj(θ)xi,t,j (C.5)

= ψi

m−1∑
k=0

γk + γm
m∑
j=1

wj(θ)Ltxi,t,j +
m∑
j=1

wj(θ)ei,t,j(γ). (C.6)

Taking the first difference in t of this second MIDAS formulation results in:

∆xi,t(θ) = γm
m∑
j=1

wj(θ)∆Ltxi,t,j +
m∑
j=1

wj(θ)∆ei,t,j(γ). (C.7)

Equations (25) and (C.7) both satisfy the condition that the MIDAS aggregate is uncorrelated
with νi,s from (3) for all s in t. It is apparent that the moving average component in (C.7) leads to
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correlation at the high frequency observations.
For the simulation study, the original Arellano and Bond assumption that ρ = 0.8 at the low

frequency is maintained. It is clear that (25) is more managable, since the value can be set. For
(C.7), the relationship between ρ and γ can be derived from the recursion of the series, γ = ρ1/m, so
for a stationary low frequency series the value of γ approaches unity as m increases, and is further
complicated by the moving average component of the errors. To avoid complications of the moving
average terms and the approach of the high frequency observations to unity, our simulation study
employs the first representation of the high frequency observations which leads to correlation at the
low frequency only.

D A Special Case under the Alternative

In the simulation study, we examine a special case that provides guidance on instrument importance
under some common weight combinations: either θA or θ0 leading to equal weights, and when the
weighting schemes are extreme opposites. To better illustrate implications of these settings, we
introduce a special case for the data generation process of the MIDAS regressor. This case allows
us to decompose the information content of each MIDAS population moment under these various
alternative hypotheses. Clearly, under the null the moment conditions hold. Our special case of the
data generating process of the high frequency observation is defined as:

Γ(q, p) = 0 for all p ̸= 0, and (D.1)

Γ(q, 0) ̸= 0 for all q ≥ 0, (D.2)
which means that the covariance between high frequency observations are zero except when the
pair are a high frequency match (e.g., xi,t,j and Lt

qxi,t,j). This data structure ensures that any
aggregation of the high frequency observations will be autoregressive, with a know parameter. It is
well known that aggregating an autoregressive high frequency series will result in an autoregressive
moving average low frequency series, and the parameters of this ARMA series are sensitive to the
aggregation weights.10 This special case is implemented in the simulation study, and we also examine
the case when high frequency observations follow an autoregressive process.

Under this special case, the population moments defined by (B.10) are,

At,r =

(
Γ(r − 1, 0) + (1− δ)

t−r−1∑
k=0

δkΓ(r + k, 0)

)
w′(θA) (w(θA)−w(θ0))β(θA)

2

(D.3)
and (B.11) are,

Bt,q =
(
(Γ(q, 0)− Γ(q + 1, 0))w′(θ0) (w(θA)−w(θ0))

)
β(θA), (D.4)

where q ≥ 0 and where r ≥ 2.

Case 1 (Equal MIDAS Weights) Consider the case where θA generates equal MIDAS weights
10Detailed derivations and discussion provided in Appendix C.

27



on each high frequency observation, wj(θA) = 1/m, where the null hypothesis imposes unequal
weights, so

H0 : wj(θ0) ̸=
1

m
for at least one j. (D.5)

The MIDAS moments simplify to
At,r = 0 and (D.6)

Bt,q = (Γ(q, 0)− Γ(q + 1, 0))

(
1

m
−w′(θ0)w(θ0)

)
β(θA). (D.7)

The result for At,r is evident since wj(θA) does not vary with j, while maintaining the sum to
unity. By theorem (1), the first moment evaluates to zero for all values of θ0, which means the
information content on θ is concentrated in Bt,q.

Case 2 (Null of Equal MIDAS Weights) Consider the case where θA generates unequal MI-
DAS weights on each high frequency observation (wj(θA) ̸= 1/m), where the null hypothesis imposes
equal weights, so

H0 : wj(θ0) =
1

m
for all j. (D.8)

The MIDAS moments are

At,r =

(
Γ(r − 1, 0) + (1− δ)

t−r−1∑
k=0

δkΓ(r + k, 0)

)(
− 1

m
+w′(θA)w(θA)

)
β(θA)

2 (D.9)

and

Bt,q = 0. (D.10)

By Case 2, the second moment evaluates to zero for all values of θA, since wj(θ0) does not
depend on j, so the information content on θ is concentrated in At,r.

Case 3 (Extreme Opposite MIDAS Weights) In this case, both θA and θ0 generate unequal
MIDAS weights on each high frequency observation, where the j-th weight for θA is zero if the
corresponding j-th weight for θ0 is non-zero, and vice versa, formally this means wj(θA)wj(θ0) = 0

for all j. The MIDAS moment conditions are

At,r =

(
Γ(r − 1, 0) + (1− δ)

t−r−1∑
k=0

δjΓ(r + k, 0)

)
w′(θA)w(θA)β(θA)

2 and (D.11)

Bt,q = − (Γ(q, 0)− Γ(q + 1, 0))w′(θ0)w(θ0)β(θA). (D.12)

Case 3 shows that the information content of the MIDAS population moments are separable
when θA and θ0 are extreme opposites.

These three cases demonstrate that identification of θ requires both y and x-based instruments.
Furthermore, these cases demonstrate that power to discriminate between alternatives will be asym-
metric, since the information content of the moments is not symmetric over θ. These cases also
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show that excluding moments can result in a loss of power, especially considering that some mo-
ment results evaluate to exactly zero. The Davies problem is reinforced by these cases, since the
identification of θ requires that β(θA) ̸= 0.
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E Tables

Table E1: Rejection Frequency for Sargan Test: Equal Weights†

N = 500 N = 1000
θA1 θA2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

Size
0 0 0.041 0.051 0.041 0.052 0.042 0.043

Power
-1 -1 0.054 0.055 0.048 0.034 0.054 0.086

-0.5 0.054 0.049 0.051 0.048 0.061 0.077
0 0.046 0.042 0.041 0.057 0.071 0.063

0.5 0.053 0.05 0.053 0.042 0.055 0.091
1 0.051 0.048 0.058 0.051 0.059 0.099

-0.5 -1 0.059 0.045 0.054 0.035 0.067 0.08
-0.5 0.053 0.041 0.056 0.042 0.063 0.066

0 0.055 0.042 0.06 0.041 0.05 0.06
0.5 0.042 0.05 0.064 0.049 0.054 0.087

1 0.054 0.042 0.057 0.06 0.065 0.086
0 -1 0.056 0.04 0.035 0.047 0.063 0.077

-0.5 0.05 0.047 0.063 0.05 0.053 0.077
0 - - - - - -

0.5 0.052 0.051 0.057 0.049 0.052 0.086
1 0.052 0.047 0.051 0.045 0.064 0.079

0.5 -1 0.045 0.05 0.053 0.052 0.055 0.077
-0.5 0.062 0.042 0.053 0.05 0.061 0.067

0 0.051 0.045 0.06 0.039 0.057 0.068
0.5 0.05 0.058 0.052 0.054 0.055 0.112

1 0.038 0.063 0.058 0.053 0.038 0.083
1 -1 0.046 0.046 0.059 0.047 0.054 0.081

-0.5 0.04 0.036 0.056 0.04 0.055 0.073
0 0.034 0.036 0.075 0.064 0.062 0.08

0.5 0.046 0.046 0.046 0.038 0.055 0.081
1 0.05 0.058 0.06 0.047 0.038 0.092

†MIDAS weights are equal for all high frequency observation (θA)
and a significance level of 5%.
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Table E2: Rejection Frequency for Sargan Test: Large Weights on Recent Observations†

N = 500 N = 1000
θB1 θB2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

Size
0.1 -0.2 0.028 0.051 0.049 0.020 0.046 0.042
Power
-1 -1 0.062 0.192 0.738 0.031 0.510 0.987

-0.5 0.055 0.134 0.541 0.037 0.379 0.909
0 0.051 0.039 0.070 0.018 0.041 0.072

0.5 0.038 0.047 0.046 0.014 0.043 0.066
1 0.046 0.060 0.055 0.023 0.030 0.066

-0.5 -1 0.064 0.153 0.700 0.041 0.512 0.979
-0.5 0.046 0.104 0.414 0.037 0.279 0.813

0 0.038 0.047 0.059 0.017 0.061 0.064
0.5 0.042 0.049 0.047 0.023 0.045 0.063

1 0.031 0.058 0.061 0.021 0.034 0.059
0 -1 0.056 0.147 0.613 0.050 0.415 0.965

-0.5 0.042 0.078 0.218 0.035 0.157 0.507
0 0.032 0.655 0.597 0.026 0.866 0.944

0.5 0.040 0.045 0.040 0.021 0.049 0.062
1 0.050 0.042 0.054 0.020 0.037 0.058

0.5 -1 0.054 0.138 0.564 0.025 0.365 0.925
-0.5 0.041 0.046 0.101 0.020 0.068 0.117

0 0.050 0.090 0.042 0.029 0.042 0.026
0.5 0.036 0.062 0.047 0.033 0.041 0.067

1 0.040 0.056 0.052 0.019 0.044 0.061
1 -1 0.048 0.101 0.435 0.024 0.308 0.819

-0.5 0.030 0.041 0.048 0.016 0.053 0.046
0 0.055 0.054 0.035 0.029 0.034 0.046

0.5 0.039 0.044 0.045 0.018 0.027 0.055
1 0.046 0.051 0.063 0.030 0.043 0.060

†MIDAS weights are much larger for more recent high frequency
observation (θB) and a significance level of 5%.
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Table E3: Rejection Frequency for Sargan Test: Recent Observations have more Weight†

N = 500 N = 1000
θC1 θC2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

Size
0.03 -0.02 0.042 0.049 0.04 0.046 0.053 0.05

Power
-1 -1 0.070 0.060 0.088 0.038 0.117 0.235

-0.5 0.058 0.051 0.074 0.042 0.112 0.211
0 0.052 0.043 0.061 0.055 0.109 0.158

0.5 0.070 0.058 0.109 0.047 0.102 0.162
1 0.068 0.078 0.097 0.061 0.112 0.163

-0.5 -1 0.064 0.044 0.110 0.045 0.108 0.223
-0.5 0.065 0.048 0.094 0.043 0.125 0.202

0 0.057 0.046 0.061 0.036 0.051 0.083
0.5 0.054 0.072 0.098 0.061 0.110 0.159

1 0.058 0.068 0.101 0.061 0.096 0.165
0 -1 0.058 0.036 0.068 0.045 0.115 0.210

-0.5 0.061 0.046 0.101 0.058 0.113 0.203
0 0.044 0.078 0.082 0.062 0.073 0.127

0.5 0.066 0.067 0.110 0.049 0.102 0.160
1 0.062 0.070 0.090 0.052 0.112 0.152

0.5 -1 0.066 0.052 0.108 0.051 0.109 0.218
-0.5 0.056 0.048 0.082 0.051 0.109 0.175

0 0.055 0.059 0.100 0.041 0.094 0.136
0.5 0.070 0.076 0.104 0.067 0.123 0.183

1 0.058 0.071 0.095 0.054 0.119 0.156
1 -1 0.044 0.050 0.107 0.060 0.121 0.225

-0.5 0.041 0.048 0.074 0.045 0.114 0.165
0 0.043 0.049 0.115 0.058 0.110 0.168

0.5 0.063 0.060 0.100 0.040 0.088 0.157
1 0.059 0.077 0.101 0.057 0.121 0.168

†MIDAS weights are modestly larger for more recent high frequency
observation (θC) and a significance level of 5%.
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Table E4: Rejection Frequency for Sargan Test: Older Observations have more Weight†

N = 500 N = 1000
θD1 θD2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

Size
-0.06 0.01 0.042 0.034 0.044 0.035 0.046 0.035

Power
-1 -1 0.055 0.049 0.045 0.050 0.083 0.126

-0.5 0.048 0.044 0.052 0.062 0.078 0.114
0 0.050 0.034 0.049 0.068 0.093 0.101

0.5 0.047 0.070 0.092 0.053 0.096 0.229
1 0.042 0.067 0.084 0.062 0.094 0.238

-0.5 -1 0.056 0.050 0.052 0.058 0.085 0.119
-0.5 0.040 0.042 0.050 0.056 0.084 0.100

0 0.052 0.045 0.063 0.053 0.083 0.093
0.5 0.036 0.062 0.097 0.066 0.099 0.249

1 0.056 0.060 0.101 0.074 0.096 0.235
0 -1 0.050 0.044 0.038 0.062 0.081 0.112

-0.5 0.041 0.047 0.059 0.058 0.075 0.117
0 0.043 0.077 0.091 0.077 0.109 0.225

0.5 0.051 0.057 0.099 0.052 0.096 0.225
1 0.046 0.056 0.070 0.061 0.094 0.231

0.5 -1 0.052 0.046 0.042 0.065 0.082 0.112
-0.5 0.062 0.039 0.063 0.053 0.080 0.102

0 0.058 0.043 0.046 0.043 0.046 0.038
0.5 0.050 0.061 0.093 0.066 0.096 0.230

1 0.033 0.073 0.103 0.062 0.094 0.220
1 -1 0.045 0.050 0.061 0.064 0.080 0.113

-0.5 0.045 0.033 0.055 0.052 0.079 0.108
0 0.035 0.048 0.087 0.062 0.066 0.094

0.5 0.043 0.068 0.084 0.055 0.099 0.204
1 0.049 0.067 0.091 0.067 0.096 0.247

†MIDAS weights are modestly larger for more older high frequency
observation (θD) and a significance level of 5%.
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Table E5: Rejection Frequency for Sargan Test: Large Weights on Older Observations†

N = 500 N = 1000
θE1 θE2 T = 5 T = 10 T = 15 T = 5 T = 10 T = 15

Size
-0.04 0.02 0.036 0.036 0.039 0.035 0.037 0.042

Power
-1 -1 0.061 0.038 0.028 0.051 0.049 0.060

-0.5 0.051 0.030 0.024 0.054 0.039 0.040
0 0.043 0.023 0.024 0.054 0.054 0.036

0.5 0.077 0.149 0.273 0.109 0.367 0.760
1 0.067 0.153 0.264 0.103 0.361 0.746

-0.5 -1 0.047 0.030 0.026 0.050 0.051 0.054
-0.5 0.041 0.026 0.031 0.050 0.058 0.050

0 0.046 0.032 0.037 0.040 0.055 0.048
0.5 0.057 0.151 0.269 0.127 0.365 0.738

1 0.075 0.135 0.270 0.119 0.345 0.751
0 -1 0.051 0.029 0.021 0.055 0.051 0.043

-0.5 0.039 0.034 0.035 0.052 0.043 0.053
0 0.060 0.242 0.472 0.275 0.680 0.968

0.5 0.080 0.145 0.276 0.107 0.329 0.728
1 0.069 0.145 0.261 0.110 0.367 0.741

0.5 -1 0.046 0.031 0.027 0.050 0.044 0.051
-0.5 0.058 0.024 0.036 0.044 0.042 0.047

0 0.049 0.042 0.051 0.050 0.053 0.054
0.5 0.071 0.155 0.283 0.120 0.367 0.718

1 0.045 0.147 0.285 0.117 0.361 0.753
1 -1 0.041 0.037 0.023 0.054 0.047 0.053

-0.5 0.049 0.025 0.025 0.049 0.045 0.047
0 0.035 0.041 0.053 0.055 0.055 0.043

0.5 0.072 0.134 0.274 0.116 0.367 0.710
1 0.065 0.144 0.259 0.122 0.361 0.755

†MIDAS weights are much larger for more older high frequency
observation (θE) and a significance level of 5%.
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Table E6: Rejection Frequency for Sargan Test: AR(1) High Frequency Series†

θ0

θ1 θ2 (−.06, .01) (−.04, .02) (0, 0) (.03,−.02) (.1,−.2)

Size
-0.06 0.01 0.017
-0.04 0.02 0.027

0 0 0.031
0.03 -0.02 0.026
0.1 -0.2 0.029
Power
-1 -1 0.021 0.032 0.03 0.02 0.022
-1 -0.5 0.024 0.031 0.029 0.024 0.023
-1 0 0.027 0.029 0.035 0.025 0.024
-1 0.5 0.854 0.037 1 1 0.998
-1 1 0.854 0.037 1 1 0.998

-0.5 -1 0.021 0.032 0.03 0.019 0.022
-0.5 -0.5 0.026 0.031 0.03 0.025 0.024
-0.5 0 0.039 0.036 0.083 0.026 0.028
-0.5 0.5 0.854 0.037 1 1 0.998
-0.5 1 0.854 0.037 1 1 0.998

0 -1 0.021 0.032 0.028 0.021 0.022
0 -0.5 0.024 0.032 0.031 0.024 0.026
0 0 0.918 0.587 – 1 1
0 0.5 0.854 0.037 1 1 0.998
0 1 0.854 0.037 1 1 0.998

0.5 -1 0.024 0.031 0.028 0.024 0.023
0.5 -0.5 0.027 0.032 0.031 0.023 0.03
0.5 0 0.998 0.027 1 1 0.997
0.5 0.5 0.854 0.037 1 1 0.998
0.5 1 0.854 0.037 1 1 0.998

1 -1 0.025 0.031 0.03 0.025 0.024
1 -0.5 0.027 0.028 0.031 0.024 0.025
1 0 0.963 0.044 1 1 0.998
1 0.5 0.854 0.037 1 1 0.998
1 1 0.854 0.037 1 1 0.998

†Series based on (C.3) with γ = 0.8.

35




