HAL
open science

Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1Hbenzimidazoles as inhibitors of ebola virus infection

Maxime Bessières, Elżbieta Plebanek, Payel Chatterjee, Punya Shrivastava-Ranjan, Mike Flint, Christina Spiropoulou, Dawid Warszycki, Andrzej Bojarski, Vincent Roy, Luigi Agrofoglio

To cite this version:

Maxime Bessières, Elżbieta Plebanek, Payel Chatterjee, Punya Shrivastava-Ranjan, Mike Flint, et al.. Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1Hbenzimidazoles as inhibitors of ebola virus infection. European Journal of Medicinal Chemistry, 2021, 214, pp.113211. 10.1016/j.ejmech.2021.113211 . hal-03717303

HAL Id: hal-03717303 https://univ-orleans.hal.science/hal-03717303

Submitted on 22 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of Ebola virus infection

Maxime Bessières ${ }^{\text {a, }} \ddagger$, Elżbieta Plebanek ${ }^{\text {a, }} \ddagger$, Payel Chatterjee ${ }^{\text {b }}$, Punya ShrivastavaRanjan ${ }^{\text {b }}$, Mike Flint ${ }^{\text {b }}$, Christina F. Spiropoulou ${ }^{\text {b }}$, Dawid Warszyckic, Andrzej J. Bojarskic, Vincent Roy ${ }^{\text {a,** }}$, Luigi A. Agrofoglio ${ }^{\text {a,* }}$
a Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France
${ }^{\text {b }}$ Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
${ }^{c}$ May Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland

* Corresponding author.
** Corresponding author.
E-mail address: luigi.agrofoglio@univ-oleans.fr (LA Agrofoglio), vincent.roy@univorleans.fr (V Roy).
\ddagger These authors contributed equally to this work.

Supporting information for this article (spectral data) is available on the www

Highlights

- Novel molecules bearing a 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazole common scaffold were synthesized as inhibitors of EBOV virus.
- The synthesized compounds were screened for their in vitro efficacy to inhibit EBOV entry.
- Compounds 25a and 26a displayed excellent EBOV entry inhibitory activity.
- Compounds 26a ($\mathrm{EC}_{50}=0.93 \mu \mathrm{M}, \mathrm{SI}=10$) and $25 \mathrm{a}\left(\mathrm{EC}_{50}=0.64 \mu \mathrm{M}, \mathrm{SI}=20\right)$ were as potent as and more selective than Toremifene ($\mathrm{EC}_{50}=0.38 \mu \mathrm{M}, \mathrm{SI}=$ 7) against cell line
- Data suggests that the mechanism by which $25 a$ and $26 a$ block EBOV infection is through the inhibition of viral entry at the level of NPC1.
- The most active compounds were docked in the active site of induced fit optimized NPC1 crystal structure
- ADME properties of compounds were established by in silico approaches

Abstract

- Novel 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles were designed and synthesized as Ebola virus inhibitors. The proposed structures of the new prepared benzimidazole-piperidine hybrids were confirmed based on their spectral data and CHN analyses. The target compounds were screened in vitro for their anti-Ebola activity. Among tested molecules, compounds $26 a\left(\mathrm{EC}_{50}=0.93 \mu \mathrm{M}, \mathrm{SI}=10\right)$ and $25 \mathrm{a}\left(\mathrm{EC}_{50}=0.64\right.$ $\mu \mathrm{M}, \mathrm{SI}=20$) were as potent as and more selective than Toremifene reference drug $\left(\mathrm{EC}_{50}=0.38 \mu \mathrm{M}, \mathrm{SI}=7\right)$ against cell line. Data suggests that the mechanism by which 25a and 26a block EBOV infection is through the inhibition of viral entry at the level of NPC1. Furthermore, a docking study revealed that several of the NPC1 amino acids that participate in binding to GP are involved in the binding of the most active compounds 25a and 26a.

Finally, in silico ADME prediction indicates that 26a is an idealy drug-like candidate. Our results could enable the development of small molecule drug capable of inhibiting Ebola virus, especially at the viral entry step.

Keywords: Ebola virus, viral entry, Niemann-Pick C1, benzimidazole-piperidine derivatives, docking studies

1. Introduction

The family Filoviridae includes five genera: Cuevavirus, Marburgvirus, Ebolavirus, Striavirus and Thamnovirus [1,2]. Since 1967, when Marburg virus was first isolated, numerous filovirus hemorrhagic fever (HF) outbreaks have occurred, often with high fatality rates. The most virulent Ebolavirus species is Zaire ebolavirus (EBOV) with mortality rate of up to 90%, [3]. Filoviruses cause HF, associated with immune suppression and a systemic inflammatory response in human and non-human primates. Filoviruses are enveloped, non-segmented, negative-sense, singlestranded RNA viruses [4]. To begin the infection cycle, the virus must transport its genetic information through the membrane of a target cell. The envelope glycoprotein (GP) of filovirus mediates binding to cellular receptors and the subsequent fusion of the virus envelope with the host cell membrane [5-8]. Study of the host factors that promote or restrict Ebola replication is of great interest as it may thus lead to the development of novel therapeutics. It has been reported that filovirus GP interacts with multiple molecules for entry into host cells [4]; the entry mechanism is complex, involving not only cell-surface molecules but also intracellular proteins. Several cellsurface molecules are thought to participate in viral entry [4,6,9,10] including the cellular lectins DC-SIGN, DC-SIGNR, LSECtin, ASPGR-1 and hMGL [11-13]. The T-
cell immunoglobulin and mucin domain-containing protein 1 (TIM-1) was also shown to be a factor with a role in virus entry [14]. Another known host cell factor is the Tyro3/Axl/Mer (TAM) family of tyrosine kinase receptors [5]. Other molecules involved in filovirus entry are $\alpha 3$ and $\beta 1$ integrins [16] as well as cathepsins (L and B) [17]. If promising results with antibody therapies have been reported, and very recently one has been approved for the treatment of EBOV infection [18] one important application for an anti-EBOV small molecule could be the treatment of persistently-infected patients, as antibodies may be unable to access the immunologically-privileged sites that harbor the virus. Thus, some representative antifilovirus small molecules, belonging to several chemical classes [19,20], are shown in Fig. 1; they target virus genome replication such as nucleosides BCX4430 and GS-5734 (remdesivir) (two non-obligate RNA chain terminator), or virus entry such as CID23631927 (a cathepsin L inhibitor), the benzimidazole FGI-103 (mechanism to be established), toremifene and terconazole (two Niemann-Pick C1dependent inhibitors). In 2011, Côté et al. identified the benzylpiperazine adamantane diamide-derived (3.47) as inhibitor of Ebola virus entry [21]. Compound 3.47, alongside a genetic screening study, was used to identify Niemann-Pick C1 protein (NPC1) as an essential receptor required for EBOV entry [21,22]. Compound 3.47 is reported to blocked binding of EBOV-GP to NPC1; however, this inhibitor has unfavourable properties for in vivo application. In 2013, Shoemaker et al. demonstrated the inhibition of EBOV entry by multiple cationic amphiphiles [23]. The mechanism of this inhibition was NPC1-dependent, but different from that described for the compound 3.47. More recently, Rong et al. reported some 4(aminomethyl)benzamides (CBS1118) as potent entry inhibitors of Ebola virus [24]. Toremifene, and other selective estrogen receptor modulators, were first identified as
inhibitors of EBOV infection in screens of approved drugs, with toremifene conferring a statistically significant survival benefit in the mouse model of infection [25-27]. Crystallographic and biochemical studies have subsequently shown that toremifene's mechanism of action is through binding in a large cavity in the EBOV glycoprotein and destabilizing its structure [28-30]. Thus, there are multiple steps and targets within the EBOV entry mechanism that might be subject to therapeutic intervention.

BCX4430

(remdesivir)

toremifene

CID23631927

terconazole

HTS hit CBS1118 low metabolic stability

Serial A: $\mathrm{X}=\mathrm{O}$
Serial B: X $=\mathrm{CH}_{2}$
target 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles

Figure 1. Some anti-ebola molecules and general structure of our new inhibitors

Several of the virus entry inhibitors are sharing common moieties, such as benzimidazole, piperazine and piperidine. Based on this finding, we report herein the synthesis of hitherto unknown 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1Hbenzimidazoles (Fig. 1); those compounds are targeting NPC1 involved in Ebola
virus entry. The main scaffold is formed by a benzimidazole moiety, which has been an important pharmacophore and privileged structure in medicinal chemistry [31], linked to a piperidine ether and its isostere 4-methylpiperidine. Modifications are done at C 2 position on the benzymidazole moiety with substituted phenyl group having (or not) a trifluoromethyl- and trifluoromethyl ether due to its peculiar properties (steric and electronic effects and enhanced lipophilicity) [32] (blue dashed rectangle). We investigate also the influence of [(phenoxy-methyl)phenyl group bearing a enzymatic stable phosphonate diester (green dashed rectangle) bounded at C 4 of the piperidine moiety by either $\mathrm{X}=\mathrm{O}$ (4-aryloxy-, serial A) or $\mathrm{X}=\mathrm{CH}_{2}$ (4-benzyl-, serial B). All compounds were evaluated for their ability to inhibit EBOV entry.

2. Results and discussion

2.1 Chemistry

2.1.1 Synthesis of 2-substitued-6-[(4-aryloxy-1-piperidyl)methyl]-1H-benzimidazoles (serial A)

The chosen strategy to the desired 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles was to follow a convergent synthesis ending with the coupling of a (4-substituted)-1-piperidine fragment at C6 position of a 6-(chloromethyl)-1Hbenzimidazole fragment, under SN conditions. Thus, the synthesis of the (4-substituted)-1-piperidine fragment started with either the α, α-dibromo-m-xylene (1a) or the α, α-dibromo-p-xylene (1b), which were converted to their phosphonate analogs $\mathbf{2 a}$ (para position) and $\mathbf{2 b}$ (meta position), respectively, respectively, by SN of bromine with diethylphosphite. Beside, catechol (3) was monoprotected to 4. Then, the nucleophilic substitution with $\mathbf{2 a}$ and $\mathbf{2 b}$ in the presence of a $\mathbf{4}$ afforded the
compounds 5a and 5b, respectively, after 20 minutes at $80^{\circ} \mathrm{C}$ under microwave irradiation. Removal of the pyrane protecting group by a treatment with pyridinium p toluenesulfonate (PPTS) during 3 hours in ethanol afforded $\mathbf{6 a}$ and $\mathbf{6 b}$, respectively, in excellent yields (Scheme 1).

 1b α, α-dibromo- m-xylene

2a (para)
2b (meta)

Scheme 1. Synthesis of compounds 6a and 6b. Reagents and conditions: (a) diethylphosphite, DMF, $150{ }^{\circ} \mathrm{C}, \mathrm{MW}, 2 \mathrm{~min}, 90 \%$ (b) DHP, PPTS, DCM, r.t., 3 h, 88$94 \%$ (c) $\mathrm{NaI}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, \mathrm{MW}, 80^{\circ} \mathrm{C}, 20 \mathrm{~min}, 72 \%$ (d) PPTS, $\mathrm{EtOH}, 55^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 99\%.

The protected piperidine-4-one (7) was reduced to 8 and activated as tosyl leaving group analog 9. After a brief optimization of the solvent, the activation and the substrate, it appears that the nucleophilic substitution of tosylpiperidine 9 with $\mathbf{6 a}$ and 6b, respectively, runs in optimal conditions with dimethylacetamide (DMA) under microwave irradiation (Scheme 2) and gave the protected piperidines 10a and 10b, respectively, in good yields. After deprotection of the carbamate group with trifluoroacetic acid, the (4-aryloxy)-1-piperidines 11a (para- position) and 11b (metaposition) were isolated, respectively.

Scheme 2. Synthesis of (4-aryloxy)-1-piperidines 11a and 11b. Reagents and conditions: (a) $\mathrm{NaH}, \mathrm{MeOH}, \mathrm{rt}, 20 \mathrm{~h}, 95 \%$ (b) $\mathrm{TsCl}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, r.t., $20 \mathrm{~h}, 98 \%$ (c) $\mathbf{6 a}$ and $6 \mathbf{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMA}, \mathrm{MW}, 140^{\circ} \mathrm{C}, 30 \mathrm{~min}, 72 \%$ (d) TFA in DCM 1:2, r.t., 1 h .

The 6-(chloromethyl)-1H-benzimidazole fragment was synthesized from methyl 3,4diaminobenzoate and various benzaldehydes 12a-e via one-step process using $\mathrm{NaHSO}_{3} 40 \%$ as oxidant, (Scheme 3). The desired compounds 13a-e were isolated in a range of $76-97 \%$ yields. After reduction of 13a-e, the (2-phenyl-3H-benzimidazol-$5-\mathrm{yl})$ methanol derivatives 14a-e were isolated in quantitative yields. The final coupling was done by (1) in situ chlorination of the benzylic alcohol of $\mathbf{1 4 a} \mathbf{e}$, in the presence of thionyl chloride and subsequent substitution with piperidine fragment $\mathbf{1 1 a , b}$ under basic conditions. The final 2-substitued-6-[(4-aryloxy-1-piperidyl)methyl]-1Hbenzimidazoles 15a-e and 16a-e were isolated in moderate yields (over two-steps).

Scheme 3. Synthesis of 2-substitued-6-[(4-aryloxy-1-piperidyl)methyl]-1Hbenzimidazoles 15a-e and 16a-e. Reagents and conditions: (a) $\mathrm{NaHSO}_{3} 40 \%$, EtOH , $100{ }^{\circ} \mathrm{C}, 1-4 \mathrm{~h}, 76-97 \%$ b) LiAlH_{4}, THF, r.t., 2-4 h, 94-99\% (c) $1 . \mathrm{SOCl}_{2}$, reflux, 2.5 h , 2. 11a or 11b, DIPEA, $\mathrm{CH}_{3} \mathrm{CN}$, r.t., $19 \mathrm{~h}, 21-40 \%$ (over two-steps).
2.1.2 Synthesis of 2-substituted-6-[(4-benzyl-1-piperidyl)methyl]-1H-benzimidazoles (serial B)

Facing some difficulties to build these 2-substituted-6-[(4-benzyl-1-piperidyl)methyl]-1H-benzimidazoles through the similar above described approach, we considered an alternative approach based first on the synthesis of the 2-(4-piperidylmethyl)phenol (22), followed then on its selective functionalization of either the piperidine moiety or the phenol moiety, (Scheme 4). Thus, the 2-bromophenol 17 was protected to its tetrahydropyranyl ether 18. The transmetallation of 18 with n-BuLi followed by the nucleophilic addition on N-Boc-piperidine-4-carboxaldehyde afforded 19. Unfortunately, the dehydroxylation/phenol deprotection of 19 with TFA/Et ${ }_{3} \mathrm{SiH}$ gave the desired $\mathbf{2 2}$ in only 21% poor yield, probably due to some removal of BOC under acidic traces. In order to circumvent this problem, $\mathbf{1 7}$ was protected as benzyl ether 20, which, following a similar pathway, afforded 21 in 65\% yield. Final dehydroxylation/phenol deprotection of 21 by hydrogenation under pressure (10 bars) during 24 hours gave 22 in quantitative yields.

Scheme 4. Synthesis of compound 22. Reagents and conditions: (a) PPTS, DHP, DCM, r.t., 12 h, quant. (b) 1. n-BuLi, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min} ., 2$ 2. 1-Boc-piperidine-4carboxaldehyde, THF, r.t., 3 h, 60-65\%. c) TFA, Et3SiH, DCM, rt, 1 h, (21% from 19) and (65\% from 21) (d) $\mathrm{BnCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h}$, quant. (e) $\mathrm{H} 2, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$, rt, $24 \mathrm{~h}, 10$ bars, quant.

22 was then reacted with 1-(bromomethyl)-4-(diethoxyphosphorylmethyl)benzene (2a) or its meta analogue $\mathbf{2 b}$ in DMA at $140{ }^{\circ} \mathrm{C}$ under microwave irradiation to afford 23a and 23b, respectively, (Scheme 5). Subsequent deprotection of the carbamate protecting group was realized in acidic conditions and led $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$, respectively. Finally, 2-substituted-6-[(4-benzyl-1-piperidyl)methyl]-1H-benzimidazoles 25a and 26a-e were obtained, respectively, as above described by (1) in situ chlorination of the benzylic alcohol of 14a-e, in the presence of thionyl chloride and subsequent substitution with piperidine fragment $\mathbf{2 4 a}, \mathbf{b}$ under basic conditions.

Scheme 5. Synthesis of 2-substituted-6-[(4-benzyl-1-piperidyl)methyl]-1Hbenzimidazoles $\mathbf{2 5 a}$ and $\mathbf{2 6 a} \mathbf{- e}$. Reagents and conditions: (a) $\mathbf{2 a}$ or $\mathbf{2 b}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMA, MW, $140^{\circ} \mathrm{C}, 30 \mathrm{~min}$, (b) TFA, r.t., $1 \mathrm{~h}, 88-94 \%$ (c) $1.14 \mathrm{a}-\mathrm{e}, \mathrm{SOCl}_{2}$, reflux, 2.5 h, 2. DIPEA, ACN, r.t., 19 h, 18-24\%.

2.2 Antiviral evaluation

The anti-EBOV activity and cytotoxicity of our molecules were assessed using an infectious recombinant reporter EBOV and by cell viability assay, respectively (Table $1)$, toremifene being used as positive control [25].

Table 1. Anti-EboV activity of benzimidazole analogues

Number	Compound	$\begin{aligned} & \mathrm{EC}_{50^{\mathrm{a}}} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{CC}_{50}{ }^{\mathrm{b}} \\ & (\mu \mathrm{M}) \end{aligned}$	SI ${ }^{\text {c }}$
15a		2.95	14.72	5
15b		2.95	14.72	5

${ }^{\text {a Effective concentration required to inhibit virus-expressed reporter fluorescence by }}$ 50\%.
${ }^{\text {b }}$ Cytotoxic concentration required to cause a loss of cell viability by 50%
${ }^{\text {c S Selectivity }}$ Index defined as $\mathrm{CC}_{50} / \mathrm{EC}_{50}$.

As a result, all componds having our benzimidazole-piperidine scaffold were found to possess a good potency ($\mathrm{EC}_{50} \mu \mathrm{M}$ range). The introduction of CF_{3} - and $\mathrm{CF}_{3} \mathrm{O}$ groups (for increased lopophilicity) didn't improve the SI. Analogs bearing a piperidine-ether moiety (e.g. 2-substitued-6-[(4-aryloxy-1-piperidyl)methyl]-1Hbenzimidazoles - serial A) appear to be less active than the 2-substituted-6-[(4-benzyl-1-piperidyl)methyl]-1H-benzimidazoles (Serial B). Compounds 16a (EC50 = $1.88 \mu \mathrm{M}, \mathrm{SI}=7)$ and $\mathbf{2 6 b}\left(\mathrm{EC}_{50}=0.87 \mu \mathrm{M}, \mathrm{SI}=5\right)$ displayed good inhibitory activity, and a SI comparable or nearly equipotent to toremifene $\left(\mathrm{EC}_{50}=0.38 \mu \mathrm{M} ; \mathrm{CC}_{50}=\right.$ $2.50 \mu \mathrm{M}$ and $\mathrm{SI}=7)$. Among those molecules, compound $26 \mathbf{a}\left(\mathrm{EC}_{50}=0.93 \mu \mathrm{M}, \mathrm{SI}=\right.$ 10) and $25 \mathrm{a}\left(\mathrm{EC}_{50}=0.64 \mu \mathrm{M}, \mathrm{SI}=20\right)$ are of great interest, meanwhile
compound 25a stood out as the most potent against EBOV. 25a and 26a are isomers of position and they both belong to serial B. To test if 25a and 26a inhibited EBOV entry, we used HIV pseudotype particles bearing the EBOV GP. Both 25a and 26a inhibited the EBOV GP-mediated entry of these particles into Huh7 cells, with EC_{50} and CC_{50} values similar to those seen with infectious EBOV (Fig. 2A). The EBOV entry receptor is NPC1, which functions in the cellular trafficking of cholesterol. We looked to see the effect of 25a and 26a on the subcellular localization of cholesterol in HeLa cells. Both of these compounds induced a dramatic accumulation of cholesterol to intracellular vacuoles, similar to that seen with U18666A, a known inhibitor of EBOV entry that acts through NPC1 (Fig. 2B). This effect was associated with minimal cytotoxicity in HeLa cells (Fig. 2C). Together, this data suggests that the mechanism by which 25a and 26a block EBOV infection is through the inhibition of viral entry at the level of NPC1.
A.
$E C_{50}=1.35 \pm 0.93 \mu \mathrm{M}$
$\mathrm{CC}_{50}=13 \pm 3 \mu \mathrm{M}$

B.
$\mathrm{EC}_{50}=2.92 \pm 1.72 \mu \mathrm{M}$
$\mathrm{CC}_{50}=11 \pm 1 \mu \mathrm{M}$

Figure 2: Compounds block EBOV GP-mediated entry and alter the subcellular distribution of intracellular cholesterol, consistent with inhibition of NPC1 activity. (A \& B) Compounds block the entry of HIV pseudotype particles bearing the EBOV GP. Data represent the mean \pm standard deviation from 3 biological repeats. Blue circles, entry; green, viability for (A) compound 25a and (B) compound 26a. (C) Compounds alter the distribution of intracellular cholesterol, consistent with an inhibition of NPC1 activity. Immunofluorescence micrographs of HeLa cells treated with compounds 25a, 26a or their DMSO-vehicle, or U18666A or its water-vehicle, then stained with filipin to visualize intracellular cholesterol. Bars are equivalent to $100 \mu \mathrm{~m}$. (D) Minimal cytotoxicity in HeLa cells treated with these compounds. Cellular viability, relative to the DMSO vehicle-control, as determined by CellTiter-Glo. Data represent the mean \pm standard deviation from 3 biological repeats.

2.3 Chemoinformatics

In order to explain these data, 25a and 26a were docked in the active site of induced fit optimized NPC1 crystallized structure (Fig. 3). The recently crystallized structure of NPC1 (PDB id: 5U73) [33] was used for the initial docking model generation in Schrödinger Suite (Protein Preparation Wizard Tool [34] and Glide [35] at default settings, except the size of the grid box set as $30 \times 30 \times 30 \AA$). Because the model showed highly unsatisfactory efficiency in retrospective virtual screening experiments, cluster-specific models were next obtained in an induced-fit docking approach. All 1637 compounds active against NPC1 fetched from the ChEMBL [36] and the PDSP databases [37] (Ki or equivalent less than 1000 nM for ChEMBL ligands or marked as an active for PDSP compounds) were clustered with the Hierarchical Clustering tool in Canvas [38]. After manual refinements, compounds were split into 20 distinct chemical classes. Centroids from each cluster were used for the induced-fit docking procedure [39] which generated one model per cluster. Screening efficiency (tested as previously, with the application of all actives and 88k decoys generated with the application of DUD-E formalism [40]) was significantly improved and the best performing model (AUC increased from 0.501 for the crystal structure to 0.722 for the best-optimized model) was used for the docking studies of compounds 25a and 26a .

Figure 3. The docking binding poses of compound 25a (orange) 26a (purple) and in the active site of NPC1 (PDB ID: 5U73). Residues within a distance of $4 \AA$ from compounds have been shown. Hydrogen bond and pi-pi stacking interactions between NPC1 and docked compounds are in red and blue, respectively. In the left bottom corner, whole NPC1 protein is shown, with the binding site highlighted in the red box.

Analysis of the docking modes showed that several of the NPC1 amino acids that participate in binding to GP [41-43] are involved in the binding of compounds 25a and 26a. The benzimidazole moiety of both compounds formed a hydrogen bond with Q421 and pi-pi stacking interaction with Y423. Both compounds created additional pipi stacking interaction: compound 25a with F504 and compound 26a with F503. Moreover, compound 26a was hydrogen-bonded with Y423.

The \#stars parameter, of the QikProp ADME prediction program, can be used to help determine the drug-likeness of a particular compound. The \#stars values of approved drugs are generally found in the acceptable range of $0-5$. The most favorable value
\#star=0 was found for compound 26a. This value indicated 26a is an ideally drug-like molecule (Table 2). Investigated compounds showed few violations of Lipinski's rule of five (RuleOfFive) and Jorgensen's rule of three (RuleOfThree). However, these guidelines for defining drug-like properties and oral availability are not always entirely predictive for an optimal lead molecule. All compounds showed good predicted human oral absorption. Their low aqueous solubility (CIQPlogS) and high - predicted octanol/water partition coefficient (QPlogPo/w) indicated the hydrophobic properties. The distribution of the compounds was simulated by calculation of binding affinities to human serum albumin (QPlogKhsa). The estimated values have been found in the acceptable range for almost all our compounds. To predict the drug cytotoxicity, the estimation of IC_{50} values for blockage of HERG K_{+}channel was used, and every compound was found to be in the acceptable range. All molecules showed excellent predicted Caco-2 cell (model for the gut- blood barier) permeability and great predicted MDCK cell (good mimic for the blood-brain barrier) permeability. Thus, these compounds are predicted to cross the blood/brain barrier (QPlogBB) and may potentially exhibit some activity in the central nervous system.

Table 2. ADME profile of synthesized compounds

	\#stars	QPlogPo/w	QPlogKhsa	QPlogHERG	QPPCaco	QPPMDCK	Percent Human Oral Absorption	Rule of Five	Rule of Three
Range or recommended values	0-5	-2.0-6.5	-1.5-1.5	Below -5	<25 poor, >500 great	<25 poor, >500 great	<25 poor, >80\% high	Max 4	Max 3
3.47 [22]	3	4.54	0.54	-5.21	60.06	71.04	72.39	1	1
15a	2	6.31	1.04	-8.16	608.80	321.19	87.82	2	0
15b	4	7.61	1.40	-7.90	736.35	1285.39	96.89	2	1
15c	7	7.83	1.44	-8.33	752.54	1879.53	100	2	1
15d	8	7.93	1.55	-8.33	748.73	1490.82	100	2	1
15e	3	7.67	1.37	-7.71	1397.40	3433.29	100	2	1
16a	4	6.90	1.18	-8.72	1113.77	625.09	95.94	2	1
16b	7	8.07	1.49	-8.34	1033.88	2646.59	100	2	1
16c	4	7.64	1.29	-7.66	1455.18	3833.36	100	2	1
16d	7	7.88	1.44	-8.64	1113.92	2744.82	100	2	1
16e	6	7.86	1.44	-8.58	1111.66	2721.34	100	2	1

25a	2	6.81	1.27	-6.72	1063.19	584.78	95.09	2	0
26a	0	6.32	1.02	-6.05	1741.80	997.06	96.08	2	0
26b	1	7.08	1.19	-5.86	1676.22	4173.72	100	2	0
26c	1	7.53	1.36	-6.66	1728.33	3415.32	100	2	1
26d	5	8.07	1.51	-7.51	1423.42	3672.55	100	2	2
26e	1	7.36	1.26	-6.27	1731.97	3660.05	100	2	1

3. Conclusions

We have developed an efficient synthesis for the generation of functionalized 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as entry inhibitors of Ebola virus. The exploration of our scaffolds was focused on the piperidine moiety as center core, and we also investigated the influence of various substitution at the benzimidazole moiety. Our compounds also exhibited a potent anti-EBOV activity, with four compounds with a submicromolar activity, and two of them 25a and 26a with an excellent selectivity index of, respectively, 10 and 20 (2 to 3 times more selective than the FDA-approved anti-cancer drug Toremifene). Data suggests that the mechanism by which 25a and 26a block EBOV infection is through the inhibition of viral entry at the level of NPC1. Finally, the ADME-Tox profile of our compounds showed an excellent in silico profile for almost all synthesized compounds, with good calculated permeability and solubility, low HERG toxicity, high permeability and good protein plasma interaction. Altogether, these compounds deserve to be further optimized and developed as potential antifiloviral drugs..

4. Experimental

4.1. Chemistry

Commercially available chemicals were of reagent grade and used as received. The reactions were monitored by thin layer chromatography (TLC) analysis using silica gel plates (Kieselgel 60F254, E. Merck). Column chromatography was performed on Silica Gel 60 M (0.040 e 0.063 mm , E. Merck). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian InovaUnity 400 spectrometer (400 MHz) in (d4) methanol, CDCl_{3}, shift values in parts per million relative to SiMe_{4} as internal reference. High

Resolution Mass spectra were performed on a Bruker maxis mass spectrometer by the "Fédération de Recherche"
4.1.1. General procedure 1 (for the synthesis of $2 a$ and $2 b$): The microwave vial was charged with α, α-dibromo-m/p-xylene ($0.40 \mathrm{~g}, 1.5 \mathrm{mmol}, 2$ equiv), phosphite derivative ($0.75 \mathrm{mmol}, 1$ equiv) and DMF (0.8 mL). The reaction mixture was heated at $150^{\circ} \mathrm{C}$ for 2 minutes through microwave activation. Then, mixture was poured into water and product was extracted with EtOAc. Combined organic phases were washed with water and brine, then dried over MgSO_{4} and concentrated under vacuum. Purification by column chromatography on silica gel (PE/EtOAc or $\mathrm{DCM} / \mathrm{MeOH})$ gave the desired product.
4.1.1.1. Diethyl 4-(bromomethyl)benzylphosphonate (2a). The title compound was prepared from α, a-dibromo- p-xylene (1a) ($0.40 \mathrm{~g}, 1.5 \mathrm{mmol}, 2$ equiv) and triethyl phosphite ($0.13 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1$ equiv) following the general procedure 1. Compound 2a (0.21 g , 88\%) was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 2 \mathrm{H}), 4.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Br}-\mathrm{CH}_{2}\right), 4.09-$ $3.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 3.16\left(\mathrm{~d}, J=21.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 1.26\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
4.1.1.2. Diethyl 3-(bromomethyl)benzylphosphonate (2b). The title compound was prepared from a, a-dibromo-m-xylene (1b) ($0.40 \mathrm{~g}, 1.5 \mathrm{mmol}, 2$ equiv) and triethyl phosphite ($0.13 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1$ equiv) following the general procedure 1 . Compound 2b (0.23 g , 94\%) was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.21(\mathrm{~m}, 4 \mathrm{H}), 4.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Br}-\mathrm{CH}_{2}\right), 4.12-3.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}\right), 3.16$ (d, $\left.J=21.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 1.26\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
4.1.2. 2-(Oxan-2-yloxy)phenol (4). Catechol 3 ($2 \mathrm{~g}, 18.2 \mathrm{mmol}, 1$ equiv) and dihydropyran ($1.66 \mathrm{~mL}, 18.2 \mathrm{mmol}, 1$ equiv) were added to a solution of pyridinium p toluenesulfonate ($46 \mathrm{mg}, 0.182 \mathrm{mmol}, 1 \mathrm{mmol} \%$) in DCM (35 mL). The solution was
then stirred at room temperature for 3 hours, and the solvent were removed under reduced pressure. The resulted mixture was then dissolved in EtOAc , washed twice with NaHCO , once with brine, dried over MgSO 4 and concentrated to afford pure compound 4 ($3.30 \mathrm{~g}, 94 \%$) as a yellowish oil, [44]. CAS: 21645-25-0.
4.1.3. Diethyl (\{4-[2-(oxan-2-yloxy)phenoxymethyl]phenyl\}methyl)phosphonate
(5a). In a $10-20 \mathrm{~mL}$ microwave vial, compound 4 ($1.12 \mathrm{~g}, 1 \mathrm{eq} ., 5.74 \mathrm{mmol}$) was dissolved in DMF (18 mL). To this solution, potassium carbonate ($1.58 \mathrm{~g}, 2$ eq., 11.48 mmol), compound $\mathbf{2 a}(2.03 \mathrm{~g}, 1.1 \mathrm{eq} ., 6.32 \mathrm{mmol})$ and few crystals of sodium iodide (catalytic amount) were added. The mixture was then stirred 20 min . at $80^{\circ} \mathrm{C}$ under microwave irradiation. After evaporation of all volatiles, the residue was purified by silica gel chromatography to afford desired product 5 a as a colorless oil. (1.42 g, $57 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), 7.30 (dd, $J=8.2$, $2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), $7.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.93\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\text {anomeric }}\right), 5.09(\mathrm{t}, \mathrm{J}$ $\left.=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 4.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\right.$ Phosph $), 3.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 3.15(\mathrm{~d}, \mathrm{~J}=$ $\left.21.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 2.16-1.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{2 / 3 / 4 / 5}\right), 1.74-1.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2 / 3 / 4 / 5}\right), 1.23(\mathrm{t}$, $\left.J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.45$ (Cquat), 147.16 (Cquat), 136.13 (d, $J=3.6 \mathrm{~Hz}, C^{q u a t)}$), 131.11 (d, $J=9.3 \mathrm{~Hz}, C^{\text {quat }}$), 129.83 ($\mathrm{d}, J=6.8 \mathrm{~Hz}, C^{\text {Ar }}$),
 97.61 (C $\left.{ }^{\text {Anomeric }}\right)$, $71.06\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.12\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 61.99\left(\mathrm{C}^{5}\right), 33.55(\mathrm{~d}$, $\left.J=138.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 30.39\left(\mathrm{C}^{2 / 3 / 4}\right), 25.30\left(\mathrm{C}^{2 / 3 / 4}\right), 18.72\left(\mathrm{C}^{2 / 3 / 4}\right), 16.36(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, CH_{3}). ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) δ 26.27. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NaO}_{6} \mathrm{P}$ 457.1756, found 457.1760.

4.1.4. Diethyl (\{3-[2-(oxan-2-yloxy)phenoxymethyl]phenyl\}methyl)phosphonate

(5b). Compound 4 ($665 \mathrm{mg}, 1.1$ eq., 3.43 mmol) was dissolved in DMF (10 mL) in a $10-20 \mathrm{~mL}$ microwave vial. To this solution were added potassium carbonate (868
mg., 2 eq., 6.28 mmol), compound $\mathbf{2 b}$ (1 g , 1eq., 3.14 mmol) and few crystals of sodium iodide (catalytic amount). The solution was then stirred 20 min . at $80{ }^{\circ} \mathrm{C}$ under microwave irradiation. After evaporation of all volatiles, the residue was purified by silica gel chromatography to afford desired product 5 b as a colorless oil. ($974 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), $7.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right) 6.88$ (m, 3H, Her), 5.08 (s, 2H, CH2-O- Ar), 3.97 (m, 5H, CH2-O-P, O-CH-O), 3.57 (m, 1H, $\mathrm{CH}_{2}-\mathrm{O}$ THP) 3.12 ($\mathrm{d}, \mathrm{J}=21.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), 2.11-1.44 (m, 7H, CH2 THP), $1.20(\mathrm{t}, \mathrm{J}$ $\left.=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl3 $) \delta$ 26.21. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NaO}_{6} \mathrm{P} 457.1756$, found 457.1760.
4.1.5. Diethyl \{[4-(2-hydroxyphenoxymethyl)phenyl]methyl\}phosphonate (6a).

To a solution of phosphonate 5 ($1.16 \mathrm{~g}, 1$ eq., 2.67 mmol) in ethanol (27 mL) pyridium p-toluenesulfonate ($34 \mathrm{mg}, 5 \mathrm{~mol} \%, 0.13 \mathrm{mmol}$) was added. The mixture was then stirred at $55{ }^{\circ} \mathrm{C}$ for 3 hours, followed by the evaporation of all volatiles. The residue was then purified by flash chromatography, eluting Petroleum Ether/EtOAc 65:35 to $1: 1$, to give unprotected compound $\mathbf{6 a}$ as a white solid. (936 mg , quantitative yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.68(\mathrm{~s}, 1 \mathrm{H}$, OH), 5.08 (s, 2H, CH2-O), 4.02 (ddq, $J=10.2,7.0,3.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.17 (d, $J=$ $21.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), $1.25\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 145.96 (Cquat), 145.74 (Cquat), 135.02 ($\mathrm{d}, J=3.8 \mathrm{~Hz}, C^{q u a t}$), 131.95 ($\mathrm{d}, J=9.3 \mathrm{~Hz}$, $C^{\text {quat }}$), $130.10\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, C^{\text {Ar }}\right.$), $128.03\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right.$), $121.89\left(\mathrm{C}^{\text {Ar }}\right), 120.08$ $\left(\mathrm{C}^{\text {Ar }}\right)$, $114.79\left(\mathrm{C}^{\text {Ar }}\right)$, $112.33\left(\mathrm{C}^{\text {Ar }}\right), 70.83\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.17\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right)$, 33.54 ($\mathrm{d}, \mathrm{J}=138.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), 16.38 ($\mathrm{d}, ~ J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}$). ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 26.08. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{P} 351.1362$, found 351.1353.

4.1.6. Diethyl \{[3-(2-hydroxyphenoxymethyl)phenyl]methyl\}phosphonate (6b).

To a solution of phosphonate 5b ($1.60 \mathrm{~g}, 1$ eq., 3.6 mmol) in ethanol (37 mL) pyridium p-toluenesulfonate ($45 \mathrm{mg}, 5 \mathrm{~mol} \%, 0.18 \mathrm{mmol}$) was added. The mixture was then stirred at $55^{\circ} \mathrm{C}$ for 3 hours, followed by the evaporation of all volatiles. The residue was then purified by flash chromatography, eluting Petroleum Ether/EtOAc $65: 35$ to $1: 1$, to give unprotected compound $\mathbf{6 b}$ as a light brown oil. (1.28 g , quant.) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 5.10 (s, 2H, CH2-O), 4.01 (ddq, $J=8.2,7.1,3.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.17 (d, $J=21.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 1.23\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.99$ (Cquat), $145.76\left(C^{\text {quat }}\right), 136.77\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}, C^{\text {quat }}\right), 132.28\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, C^{\text {quat }}\right)$, $129.79\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, C^{\text {Ar }}\right), 129.11\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, C^{\text {Ar }}\right), 128.91\left(\mathrm{~d}, J=3.0 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right)$, $126.26\left(d, J=3.5 \mathrm{~Hz}, C^{\text {Ar }}\right.$), $121.88\left(C^{\text {Ar }}\right)$, $120.08\left(C^{\text {Ar }}\right), 114.86\left(C^{\text {Ar }}\right)$, $112.37\left(C^{\text {Ar }}\right)$, 70.91 ($\mathrm{CH}_{2}-\mathrm{O}$), 62.17 (d, $J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 33.77 ($\mathrm{d}, J=138.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), 16.37 ($\mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{3}$). ${ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 26.05. HRMS-ESI (m / z) : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{P} 351.1362$, found 351.1360.
4.1.7. tert-Butyl 4-hydroxypiperidine-1-carboxylate (8). tert-Butyl 4-oxopiperidine-1-carboxylate 7 (5 g , 1 eq., 25.1 mmol) was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ under inert atmosphere. This solution was cooled at $0{ }^{\circ} \mathrm{C}$ and sodium borohydride was subsequently added portionwise ($950 \mathrm{mg}, 1$ eq., 25.1 mmol). The mixture was allowed to reach room temperature and stirred for 20 h . The solution was carefully quenched at $0{ }^{\circ} \mathrm{C}$ with 2 N sodium hydroxide (20 mL), followed by evaporation of all volatiles. The mixture was then dissolved in EtOAc (40 mL) and water (20 mL). The aqueous phase was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), the organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. Purification by silica gel column chromatography (Petroleum

Ether/EtOAc 8:2) afforded desired product 8 as a white solid. (4.8 g, 95\%), [45]. CAS : 109384-19-2.
4.1.8. tert-Butyl 4-[(4-methylbenzenesulfonyl)oxy]piperidine-1-carboxylate (9). To a solution of compound $8(5 \mathrm{~g}, 1$ eq., 24.8 mmol) in DCM (50 mL), triethylamine ($13.9 \mathrm{~mL}, 4$ eq., 99.4 mmol) and p-toluenesulfonyl chloride ($9.47 \mathrm{~g}, 2$ eq., 49.7 mmol) were added. The mixture was stirred 20 h at room temperature followed by the concentration of this solution under reduced pressure. The residue was then dissolved in DCM (20 mL) and water (20 mL), extracted with DCM $(20 \mathrm{~mL})$, washed with $1 \mathrm{~N} \mathrm{HCl}(40 \mathrm{~mL})$, extracted twice with $\mathrm{DCM}(2 \times 40 \mathrm{~mL})$, dried over MgSO_{4} and evaporated. The crude was then purified by silica gel column chromatography (Petroleum ether/EtOAc 8:2) to afford desired product 9 as a white crystalline solid. ($8.7 \mathrm{~g}, 99 \%$), [46]. CAS : 118811-07-7.
4.1.9. tert-Butyl-4-\{[2-(\{4-[(diethoxyphosphoryl)methyl]phenyl\}methoxy)phenyl]methyl \}piperidine-1-carboxylate (10a). In a 10-20 mL microwave vial, phosphonate compound 6a (512 mg, 1 eq., 1.46 mmol) was dissolved in dimethylacetamide (13 mL). To this solution, potassium carbonate ($404 \mathrm{mg}, 2 \mathrm{eq}$., $2.92 \mathrm{mmol})$ and compound 9 ($778 \mathrm{mg}, 1.5 \mathrm{eq} ., 2.19 \mathrm{mmol}$) were then added and this mixture was stirred at $140{ }^{\circ} \mathrm{C}$ during 30 min under microwave irradiation. The resulting residue was dissolved in EtOAc (20 mL) and water (25 mL), and the aqueous phase was extracted thrice with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic phases were then washed 5 times with water ($5 \times 25 \mathrm{~mL}$), once with brine (25 mL) and dried over magnesium sulfate. The residue was concentrated under reduced pressure and purified by silica gel column chromatography, eluting $\mathrm{DCM} / \mathrm{MeOH} 99: 1$, to afford the intermediate 10a as colorless oil which was directly engaged in the next step.
4.1.10.
tert-Butyl-4-\{[2-(\{3-[(diethoxyphosphoryl)methyl]phenyl\}methoxy) phenyl]-methyl\}piperidine-1-carboxylate (10b). In a 2-5 mL microwave vial, phosphonate compound 6b (100 mg, 1 eq., 0.29 mmol) was dissolved in dimethylacetamide (DMA, 2.5 mL). To this solution potassium carbonate $(81 \mathrm{mg}$, 2 eq., 0.57 mmol) and compound 9 ($152 \mathrm{mg}, 1.5$ eq., 0.43 mmol) were afterwards added. This reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 30 min under microwave irradiation. The resulting residue was dissolved in EtOAc (10 mL) and water (5 mL), and the aqueous phase was extracted thrice with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic phases were then washed 5 times with water ($5 \times 5 \mathrm{~mL}$), once with brine (5 mL) and dried over magnesium sulfate. The crude was concentrated under reduced pressure and purified by silica gel column chromatography, eluting DCM/MeOH 99:1, to afford desired product 10b as colorless oil. (100 mg, 71\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) δ $7.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.03(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{O}$), 4.41 (m, 1H, H H^{4} pip), 3.87 (ddq, $J=6.9,6.1,0.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.56 (m, $2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 3.17 (d, J=21.5 Hz, 2H, CH2-P), 3.15 (m, 2HH², H $\mathrm{H}^{3}, \mathrm{H}^{5}$ pip), 1.51 (s, 2H, H$\left.{ }^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.35$ (s, $9 \mathrm{H}, \mathrm{CH}_{3} B o c$), 1.07 (dt, $J=6.9,0.4 \mathrm{~Hz}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 154.36(\mathrm{C}=\mathrm{O}), 150.05$ (C $\left.{ }^{\text {quat }}\right), 147.18$ (Cquat), 137.83 (d, $J=3.0 \mathrm{~Hz}, C^{\text {quat }}$), 132.88 ($\left.\mathrm{d}, J=8.7 \mathrm{~Hz}, C^{\text {quat }}\right), 129.61$ ($\mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 129.07 ($\mathrm{d}, J=6.8 \mathrm{~Hz}, C^{\text {Ar }}$), $128.74\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, C^{\text {Ar }}\right.$), $126.00\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, C^{\text {Ar }}\right.$), $122.57\left(\mathrm{C}^{\text {Ar }}\right), 121.79\left(\mathrm{C}^{\text {Ar }}\right)$, $118.59\left(\mathrm{C}^{\text {Ar }}\right), 115.52\left(\mathrm{C}^{\text {Ar }}\right), 79.11$ ($\left.\mathrm{C}^{\text {quat }} \mathrm{Boc}\right)$, $74.19\left(\mathrm{C}^{4}\right.$ pip), $70.43\left(\mathrm{CH}_{2}-\mathrm{O}\right), 61.83$ (d, $\left.J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 39.74\left(\mathrm{C}^{2}, \mathrm{C}^{6}\right.$ pip, under DMSO peak), 32.71 (d, $J=134.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), $31.00\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 28.53\left(\mathrm{CH}_{3} \mathrm{Boc}\right), 16.64$ (d, $\left.J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, DMSO) δ 26.34. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{4} \mathrm{NO}_{7} \mathrm{P} 534.2621$, found 534.2615.
4.1.11. General procedure 2 (for BOC removal) : Trifluoroacetic acid (100 eq.) was added dropwise to a mixture of Boc-compound (1 eq.) in DCM (2:1 DCM/TFA v/v). The reaction was stirred at room temperature for 2 h and then volatiles were removed under reduced pressure. The crude product was extracted with EtOAc, washed with NaHCO_{3} until pH 7 , dried over MgSO_{4}, filtrated and concentrated under vacuum. Pure compounds were obtained after purification by flash column chromatography with $\mathrm{DCM} / \mathrm{MeOH}$ (95:5) as eluent.

4.1.11.1. Diethyl (\{4-[2-(piperidin-4-yloxy)phenoxymethyl]phenyl\}methyl)

phosphonate (11a). Following general procedure 2, trifluoroacetic acid (11.1 mL, 100 eq., 146 mmol) was added to a solution of intermediate $\mathbf{1 0 a}$ in DCM (20 mL). Pure compound 11a was obtained after flash column chromatography (DCM/MeOH 95:5), affording desired product as an orange solid. ($588 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.29\left(\mathrm{~d}, J=8.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.09$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.01\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 4.57$ (quint., $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}$ pip), 4.04 ($2 x \mathrm{ddq}, J=7.7,6.7,2.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.38 (dt, $\left.J=13.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6} \mathrm{pip}\right), 3.26\left(\mathrm{~d}, J=21.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 3.09(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 3.13 (tdd, $J=12.8,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), 2.03 (dt, $J=7.1,5.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}^{3}, \mathrm{H}^{5}$ pip), $1.26\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.55$ (Cquat), 135.15 ($\left.\mathrm{d}, J=3.8 \mathrm{~Hz}, C^{q u a t}\right), 129.78\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right), 127.65(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $\left.C^{\text {Ar }}\right)$, $123.08\left(\mathrm{C}^{\text {Ar }}\right), 121.41\left(\mathrm{C}^{\text {Ar }}\right)$, $118.82\left(\mathrm{C}^{\text {Ar }}\right), 114.95\left(\mathrm{C}^{\text {Ar }}\right), 70.80\left(\mathrm{C}^{4} \mathrm{pip}\right), 70.52$ ($\mathrm{CH}_{2}-\mathrm{O}$), 62.35 (d, $\left.J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 40.24\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 31.86(\mathrm{~d}, J=138.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}-\mathrm{P}\right)$, 27.06(C $\left.\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.24\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 27.50. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{P}$ 434.2097, found 434.2100.

4.1.11.2. Diethyl (\{3-[2-(piperidin-4-ylmethyl)phenoxymethyl]phenyl\}methyl)

 phosphonate (11b). Following general procedure 2, trifluoroacetic acid ($1.5 \mathrm{~mL}, 100$eq., 19.7 mmol) was added to a solution of compound $\mathbf{1 0 b}$ ($105 \mathrm{mg}, 1$ eq., 0.197 mmol) in DCM (3 mL). Pure compound 11b was obtained after flash column chromatography (DCM/MeOH 95:5), affording desired product as an orange solid. (58 mg, 68\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), $7.29(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 4.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 4.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$ pip), 3.95 ($2 x$ ddq, $J=7.6,6.6,0.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.32 (td, $J=12.9,3.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 3.12 (d, $J=21.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), 3.09 (m, 2H, H${ }^{2}, \mathrm{H}^{6}$ pip), 2.25 (tdd, $J=$ 12.8, 4.7, 2.2 Hz, 2H, H ${ }^{3}, \mathrm{H}^{5}$ pip), 1.96 (dd, $J=13.1,2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), 1.22 (td, $\left.J=7.1,0.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.77$ (Cquat), 146.38 (Cquat), 137.04 ($\mathrm{d}, J=3.4 \mathrm{~Hz}, C^{\text {quat }}$), 131.41 (d, $J=9.5 \mathrm{~Hz}, C^{\text {quat }}$), 129.87 (d, $J=6.7 \mathrm{~Hz}, C^{\text {Ar }}$), 128.91 ($\mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 126.78 ($\mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 124.51 ($\mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$),
 63.09 (d, $J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), $39.44\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 32.96$ (d, $J=139.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), 26.66($\left.\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 16.06\left(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.57$. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{P}$ 434.2097, found 434.2094.
4.1.12. General procedure 3 (for benzimidazole ring construction): Solution of an aldehyde (12a-e, respectively), (1 equiv) in $40 \% \mathrm{NaHSO}_{3}(4 \mathrm{~mL})$ was stirred for 1 h at room temperature, then solution of methyl 3,4-diaminobenzoate $(0.65 \mathrm{~g}, 3.94 \mathrm{mmol}$, 1 equiv) in $\mathrm{EtOH}(2 \mathrm{~mL})$ was added. Resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for $1-4 \mathrm{~h}$, then concentrated. Residue was dissolved in water and extracted with EtOAc. Combined organic phases were dried over MgSO_{4} and concentrated. The crude product was purified by flash column chromatography (PE/EtOAc or DCM/MeOH) to afford desired product.
4.1.12.1. 5-Methyl carboxylate-2-phenyl-benzimidazole (13a). The title compound was prepared from benzaldehyde 12a ($0.4 \mathrm{~mL}, 3.94 \mathrm{mmol}, 1$ equiv) following the
general procedure 3 . Compound $13 \mathrm{a}(0.97 \mathrm{~g}, 97 \%)$ was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{dd}, \mathrm{J}=8.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 3 \mathrm{H}), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.97,130.99,129.44,129.38,127.08,125.02,124.70,52.42\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} 253.0972$ found 253.0974.

4.1.12.2. 5-Methyl carboxylate-2-[4-(trifluoromethyl)phenyl]-benzimidazole

 (13b). The title compound was prepared from 4-trifluoromethyl-benzaldehyde (0.41 $\mathrm{mL}, 3.00 \mathrm{mmol}, 1$ equiv) following the general procedure 3 . Compound $13 \mathrm{~b}(0.90 \mathrm{~g}$, 93%) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 13.51$ (s, $1 \mathrm{H}, \mathrm{NH}$), $8.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.35-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.92-7.82(\mathrm{~m}$, 1H), $7.81-7.59(\mathrm{~m}, 1 \mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 166.63$, 133.31, 130.33, 127.43, 126.05, 126.01, 125.40, 122.69, 111.82, 52.05 (CH_{3}). ${ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO) $\delta-61.30$. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} 321.0845$ found 321.0848 . IR $\left(\mathrm{cm}^{-1}\right) 3296,1688,1618,1443,1319$, 1289, 1239, 1225, 1163, 1114, 1100, 1064, 1019, 984, 850, 765, 749, 696, 653. Mp $260^{\circ} \mathrm{C}$.
4.1.12.3. 5-Methyl carboxylate-2-[3-(trifluoromethyl)phenyl]-benzimidazole

 (13c). The title compound was prepared from 3-trifluoromethyl-benzaldehyde (0.24 $\mathrm{mL}, 1.8 \mathrm{mmol}, 1$ equiv) following the general procedure 3 . Compound $13 \mathrm{c}(0.44 \mathrm{~g}$, 76%) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 13.45$ (s, 1H, NH), $8.53(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.68$ (m, 1H), 3.88 (s, 3H, CH3). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 166.64,152.21,130.60$, $130.55,130.36,130.03,129.71,126.85,126.82,125.35,123.84,123.66,123.14$, 123.10, 122.64, $52.05\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO) δ-61.32. HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} 321.0845$ found 321.0848 . IR $\left(\mathrm{cm}^{-1}\right) 3296,1694$,1628, 1538, 1459, 1438, 1331, 1306, 1285, 1270, 1221, 1182, 1166, 1121, 1108, $1098,1070,991,919,803,772,751,700,688,650,612 . \mathrm{Mp} 190^{\circ} \mathrm{C}$.

4.1.12.4. 5-Methyl carboxylate-2-[4-(trifluoromethoxy)phenyl]-benzimidazole

 (13d). The title compound was prepared from 4-trifluoromethoxybenzaldehyde (0.75 $\mathrm{mL}, 5.3 \mathrm{mmol}, 1$ equiv) following the general procedure 3 . Compound 13d (1.38 g, 78%) was obtained as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.31$ (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), $8.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.87\left(\mathrm{dt}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.593 .88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.15(\mathrm{C}=\mathrm{O})$, $152.98\left(C^{q u a t}\right), 150.12\left(C^{q u a t}\right), \quad 129.31\left(C^{\text {Ar }}\right), 129.25\left(C^{\text {Ar }}\right), 126.73\left(C^{\text {Ar }}\right), 124.11\left(\mathrm{C}^{\text {Ar }}\right)$, $123.96\left(\mathrm{C}^{\mathrm{Ar}}\right), 121.99\left(\mathrm{C}^{\mathrm{Ar}}\right), 121.77\left(\mathrm{C}^{\mathrm{Ar}}\right), 52.50\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO) δ 56.64. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} 337.0839$ found 337.0842 .
4.1.12.5. 5-Methyl carboxylate-2-[3-(trifluoromethoxy)phenyl]-benzimidazole

 (13e). The title compound was prepared from 3-trifluoromethoxybenzaldehyde (0.75 $\mathrm{mL}, 5.3 \mathrm{mmol}, 1$ equiv) following the general procedure 3 . Compound $\mathbf{1 3 e}(1.61 \mathrm{~g}$, 91\%) was obtained as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.24$ (d, $J=$ $\left.7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 8.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.88\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right)$, $7.55\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.12$ $(C=O), 153.88$ ($\left.C^{q u a t}\right), 152.66\left(C^{q u a t}\right), 149.31\left(C^{q u a t}\right), 132.26\left(C^{\text {Ar }}\right), 131.81$ ($\left.C^{q u a t}\right)$, $126.20\left(\mathrm{C}^{\text {Ar }}\right), 124.27\left(\mathrm{C}^{\text {Ar }}\right), 123.31\left(\mathrm{C}^{\text {Ar }}\right), 119.39\left(\mathrm{C}^{\text {Ar }}\right), 52.53\left(\mathrm{CH}_{3}\right){ }^{19} \mathrm{~F}$ NMR $(376$ $\mathrm{MHz}, \mathrm{DMSO}$) $\delta-56.71$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} 337.0839$ found 337.0841 .4.1.13. General procedure 4 (for reduction with AlLiH $_{4}$): To the mixture of LiAlH_{4} ($0.03 \mathrm{~g}, 0.8 \mathrm{mmol}, 2$ equiv) in dry THF (1 mL), cooled at $0{ }^{\circ} \mathrm{C}$, solution of methyl 2-substitued-benzimidazole-5 carboxylate (1 equiv) in dry THF (1 mL) was slowly added. The ice bath was removed, and the reaction mixture was stirred for 2-4h.

After completion EtOAc and water were added. Then, aqueous phase was extracted with EtOAc (3x) and combined organic phases were dried over MgSO_{4} and concentrated to give desired product.
4.1.13.1. 5 -Hydroxymethyl-2-phenyl-benzimidazole (14a). The title compound was prepared from 13a ($0.10 \mathrm{~g}, 0.4 \mathrm{mmol}, 1$ equiv) following the general procedure 4. Compound 14a (0.09 g, quantitative) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO) ס 12.86 (s, 1H, NH), 8.16 (dd, J= 8.0, 1.3 Hz, 2H), $7.76-7.36$ (m, 5H), $7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.60\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 130.24,129.70,128.91,126.31,63.40\left(\mathrm{CH}_{2}\right)$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O} 225.1022$ found 225.1024 .
4.1.13.2. 5-Hydroxymethyl-2-[4-(trifluoromethyl)phenyl]-benzimidazole (14b). The title compound was prepared from 13b ($0.40 \mathrm{~g}, 1.25 \mathrm{mmol}$, 1 equiv) following the general procedure 4. Compound 14b ($0.35 \mathrm{~g}, 94 \%$) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 8.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 149.58,134.01,129.68,126.95,125.96,125.92,125.50$, 122.79, $63.32\left(\mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO) δ-61.16.HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O} 293.0896$ found 293.0900.IR $\left(\mathrm{cm}^{-1}\right) 3131,2944,2877,1621$, $1434,1316,1281,1164,1116,1065,1010,961,876,849,808,786,749,693,646$, 634.Mp $228{ }^{\circ} \mathrm{C}$.
4.1.13.3. 5-Hydroxymethyl-2-[3-(trifluoromethyl)phenyl]-benzimidazole (14c). The title compound was prepared from 13c ($0.31 \mathrm{~g}, 0.96 \mathrm{mmol}, 1$ equiv) following the general procedure 4 . Compound $14 \mathrm{c}(0.27 \mathrm{~g}, 95 \%)$ was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.71(\mathrm{~m}, 2 \mathrm{H})$, $7.69-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101

MHz, MeOD) $\delta 151.92,132.76,132.44,132.10,131.14,127.66,127.62,126.77$, 124.41, 124.37, 124.07, $65.55\left(\mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{MeOD}$) $\delta-64.33$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O} 293.0896$ found 293.0901. IR $\left(\mathrm{cm}^{-1}\right) 3063$, 2866, 2824, 1437, 1399, 1328, 1312, 1281, 1168, 1119, 1072, 1002, 975, 820, 798, 720, 699, 686, 657, 650.Mp $202^{\circ} \mathrm{C}$.

4.1.13.4. 5-Hydroxymethyl-2-[4-(trifluoromethoxy)phenyl]-benzimidazole (14d).

 The title compound was prepared from 13d ($1.38 \mathrm{~g}, 4.11 \mathrm{mmol}, 1$ equiv) following the general procedure 4. Compound $14 \mathrm{~d}(1.21 \mathrm{~g}, 95 \%)$ was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.29\left(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.61$ (s, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.56\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.22(\mathrm{~s}, 1 \mathrm{H}$, OH), 4.61 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 150.30,149.62,144.25$, $143.21,138.14,136.94,135.50,129.98,128.77\left(\mathrm{C}^{\text {Ar }}\right.$), 124.35, 122.68 ($\mathrm{C}^{q u a t), ~} 121.91$ ($\left.C^{\text {Ar }}\right)$, $121.80\left(C^{\text {Ar }}\right), 121.49$ ($\left.C^{q u a t}\right), 119.25,118.20\left(d, J=157.8 \mathrm{~Hz}, C^{\text {Ar }}\right)$, 116.69, $110.53\left(\mathrm{~d}, \mathrm{~J}=174.2 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right), 63.85\left(\mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO) $\delta-56.68$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O} 309.0890$ found 309.0893.
4.1.13.5. 5-Hydroxymethyl-2-[3-(trifluoromethoxy)phenyl]-benzimidazole (14e).

 The title compound was prepared from $13 \mathrm{e}(1.61 \mathrm{~g}, 4.80 \mathrm{mmol}, 1$ equiv) following the general procedure 4 . Compound $14 \mathrm{e}(1.41 \mathrm{~g}, 95 \%)$ was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 13.05$ (bs, 1H, NH), 8.20 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 8.13 (s, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.70\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.58\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right)$, $7.49\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.20\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 5.21(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.62(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 150.02$ ($\left.\mathrm{C}^{\text {quat }}\right), 149.33$ ($\mathrm{C}^{\text {quat }), ~} 132.94$ ($\mathrm{C}^{\text {Ar })}$, $131.64\left(C^{q u a t}\right), 125.70\left(C^{A r}\right), 122.54\left(C^{A r}\right), 121.86\left(C^{A r}\right), 119.31\left(C^{q u a t}\right), 118.93\left(C^{\text {Ar }}\right)$, $63.80\left(\mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO) $\delta-56.69$. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O} 309.0890$ found 309.0892 .
4.1.14. General procedure 5 (for coupling piperidine fragment with

 benzimidazole fragment) : To a flask containing benzimidazole derivative (1 eq.), SOCl_{2} (29 eq.) was added and the resulted mixture was stirred for 2 h 30 at $80^{\circ} \mathrm{C}$. After cooling to room temperature, SOCl_{2} was evaporated and the obtained solid was diluted with $\mathrm{ACN}(4 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then, to this solution, piperidine derivative (1 eq.) and diisopropylethylamine (5.3 eq.) were added. The ice bath was removed and the reaction mixture was allowed to stir for 16-19h at room temperature. After concentration, the crude product was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}$) to give the desired product.4.1.14.1. Diethyl (\{4-[2-(\{1-[(2-phenyl-1H-1,3-benzodiazol-6-yl)methyl]piperidin-4-yl\}oxy)phenoxymethyl]-phenyl\}methyl)phosphonate (15a). The title compound was obtained following the general procedure 5 from benzimidazole 14a ($31 \mathrm{mg}, 1$ eq., 0.138 mmol), $\mathrm{SOCl}_{2}(293 \mu \mathrm{~L}, 29$ eq., 4.01 mmol) and then compound 11a (60 mg , 1 eq., 0.138 mmol), diisopropylethylamine ($124 \mu \mathrm{~L}, 5.3$ eq., 0.73 mmol) in ACN (2 mL). After purification by silica gel column chromatography, eluting $\mathrm{DCM} / \mathrm{MeOH}$ 95:5, the clean compound 15a was obtained as an amorphous creamy solid. (29 mg , $40 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.12\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.63\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), 7.37 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 7.04 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 6.91 (dquint, $J=7.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 5.06 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 4.48 (s, 1H, H ${ }^{4}$ pip), 4.00 (ddq, $J=8.8,7.0,1.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.93 (s, 2H, CH2-N), 3.24 (d, J=21.7 Hz, 2H, CH2-P), 3.06 (bs, 2H, H ${ }^{2}, \mathrm{H}^{6} \mathrm{pip}$), 2.76 (bs, $2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), $1.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}\right.$ pip), $1.23\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{MeOD}) \delta 150.15$ (Cquat), 147.01 (Cquat), 136.24 (d, $J=3.9 \mathrm{~Hz}, \mathrm{C}^{\text {quat }}$), 131.11 (d, $\left.J=9.2 \mathrm{~Hz}, \mathrm{C}^{\text {quat }}\right), 130.19\left(\mathrm{C}^{\text {Ar }}\right), 129.71\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right)$, $129.42\left(\mathrm{C}^{\text {Ar }}\right), 128.79\left(\mathrm{C}^{\text {Ar }}\right)$, 127.59 ($\mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 126.48 ($\mathrm{C}^{\text {Ar }}$), 122.46 ($\left.\mathrm{C}^{\text {Ar }}\right)$, 121.46 ($\mathrm{C}^{\text {Ar }}$), 118.52 ($\mathrm{C}^{\text {Ar }), ~}$ 115.23 ($\left.\mathrm{C}^{\mathrm{Ar}}\right)$, 70.49 ($\mathrm{CH}_{2}-\mathrm{O}$), $62.30\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 62.09\left(\mathrm{CH}_{2}-\mathrm{N}\right), 48.99$
(C^{2}, C^{6} pip), $32.00\left(d, J=138.2 \mathrm{~Hz}, C H_{2}-P\right), 29.14\left(C^{3}, C^{5} p i p\right), 15.23(d, J=6.0 \mathrm{~Hz}$, CH_{3}). ${ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) δ 27.43 HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ 640.2941, found 640.2935 .

4.1.14.2. Diethyl \{[4-(2-\{[1-(\{2-[4-(trifluoromethyl)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]oxy\}phenoxy-methyl)phenyl]methyl\}phosphonate

(15b). The title compound was obtained following the general procedure 5 from benzimidazole 14b (0.16 mmol), $\mathrm{SOCl}_{2}(340 \mu \mathrm{~L}, 29$ eq., 4.68 mmol$)$ and then compound 11a ($70 \mathrm{mg}, 1$ eq., 0.16 mmol), diisopropylethylamine ($144 \mu \mathrm{~L}, 5.3 \mathrm{eq}$., $0.85 \mathrm{mmol})$ in ACN (4 mL). After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound 15b was obtained as an amorphous creamy solid. ($28 \mathrm{mg}, 32 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.42$ (bs, 1H, H^{Ar}), 8.33 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.70\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.38\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.28(\mathrm{~m}, 3 \mathrm{H}$, $\left.H^{A r}\right), 6.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), $5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 4.37(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}^{4}$ pip), 3.98 (m, 4H, CH2-O-P), 3.75 (s, 2H, CH2-N), $3.20(\mathrm{~d}, J=21.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{P}$), 2.89 (bs, 2H, H ${ }^{2}, \mathrm{H}^{6}$ pip), 2.51 (bs, $2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 1.89 (m, $4 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), $1.20\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 150.89$ (Cquat), 150.05 ($\left.\mathrm{C}^{\text {quat }}\right), 147.19$ ($\left.\mathrm{C}^{\text {quat }}\right), 136.29\left(\mathrm{~d}, J=3.0 \mathrm{~Hz}, \mathrm{C}^{\text {quat }}\right), 131.36$ ($\left.\mathrm{C}^{\text {quat }}\right), 131.04$ (Cquat), 130.94 (Cquat), 130.72 ($C^{q u a t), ~} 130.63$ ($\left.C^{q u a t}\right), 129.83$ ($\left.C^{\text {Ar }}\right), 129.78$ ($\left.C^{\text {Ar }}\right), 129.67(\mathrm{~d}, J=$
 $123.08\left(C^{\text {Ar }}\right), 122.66\left(C^{\text {Ar }}\right), 122.19\left(C^{\text {Ar }}\right), 121.45\left(C^{\text {Ar }}\right), 118.29\left(C^{\text {Ar }}\right), 115.33\left(C^{\text {Ar }}\right)$, $70.50\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.48\left(\mathrm{CH}_{2}-\mathrm{N}\right), 62.30\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 49.37\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right)$, $31.96\left(\mathrm{~d}, J=138.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 29.70\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.25\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) $\delta 27.42 .{ }^{19}$ F NMR (376 MHz, MeOD) δ-64.25. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P} 708.2811$, found 708.2812 .

4.1.14.3. Diethyl \{[4-(2-\{[1-(\{2-[3-(trifluoromethyl)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]oxy\}phen-oxymethyl)phenyl]methyl\}phosphonate

 (15c). The title compound was obtained following the general procedure 5 from benzimidazole 14c ($47 \mathrm{mg}, 1$ eq., 0.16 mmol), $\mathrm{SOCl}_{2}(340 \mu \mathrm{~L}, 29 \mathrm{eq} ., 4.68 \mathrm{mmol})$ and then compound 11a (70 mg , 1 eq., 0.16 mmol), diisopropylethylamine ($144 \mu \mathrm{~L}$, 5.3 eq., 0.85 mmol) in $\mathrm{ACN}(4 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound 15c was obtained as an amorphous creamy solid. ($24 \mathrm{mg}, 21 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.41$ (bs, $\left.1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 8.33\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{A r}\right), 7.71\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 6.94(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 5.01 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 4.40 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{4} \mathrm{pip}\right), 3.96$ (m, 4H, CH2-O-P), 3.82 (s, 2H, CH2-N), 3.19 (d, J = 23.3 Hz, 2H, CH2-P), 2.97 (bs, 2H, H ${ }^{2}, \mathrm{H}^{6}$ pip), 2.68 (bs, 2H, $\mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 1.95 (m, 4H, H${ }^{3}, \mathrm{H}^{5}$ pip), $1.18\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{MeOD}) \delta 150.10\left(\mathrm{C}^{\text {Ar }}\right), 137.46\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right), 136.93$ ($\left.\mathrm{C}^{\text {Ar }}\right), 136.27(\mathrm{~d}, J=$ $\left.3.7 \mathrm{~Hz}, C^{\text {quat }}\right), 129.87\left(\mathrm{C}^{\text {Ar }}\right), 129.82\left(\mathrm{C}^{\text {Ar }}\right), 129.68\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, C^{\text {Ar }}\right), 127.54(\mathrm{~d}, J=$ 70.51 ($\mathrm{CH}_{2}-\mathrm{O}$), 62.30 (d, $J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), $62.25\left(\mathrm{CH}_{2}-\mathrm{N}\right), 49.20\left(\mathrm{C}^{2}, \mathrm{C}^{6}\right.$ pip), 31.91 (d, $J=137.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), 29.34 ($\mathrm{C}^{3}, C^{5} \mathrm{pip}$), $15.21\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) $\delta 27.44 .{ }^{19}$ F NMR (376 MHz, MeOD) δ-64.33. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P} 708.2811$, found 708.2809.

4.1.14.4. Diethyl \{[4-(2-\{[1-(\{2-[4-(trifluoromethoxy)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]oxy\}phen-oxymethyl)phenyl]methyl\}phosphonate

 (15d). The title compound was obtained following the general procedure 5 from benzimidazole 14d ($36 \mathrm{mg}, 1$ eq., 0.12 mmol), SOCl_{2} ($244 \mu \mathrm{~L}, 29$ eq., 3.35 mmol) and then compound 11a (50 mg , 1 eq., 0.12 mmol), diisopropylethylamine ($104 \mu \mathrm{~L}$, 5.3 eq., 0.61 mmol) in $\mathrm{ACN}(2 \mathrm{~mL})$. After purification by silica gel columnchromatography, eluting DCM/MeOH 95:5, the clean compound 15d was obtained as an amorphous creamy solid. (17 mg, 23\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.17$ (d, $J=$ $\left.9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.46\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $\left.2 H, H^{A r}\right), 7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right)$, 4.40 (s, 1H, H ${ }^{4}$ pip), 3.99 (dqd, J=9.8, $7.0,1.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.80 (s, 2H, CH2N), 3.21 (d, J = $21.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), 2.95 (bs, $2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 2.58 (bs, $2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 1.92 (m, 4H, H${ }^{3}, \mathrm{H}^{5}$ pip), 1.21 (t, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD) $\delta 151.27$ (Cquat), 150.42 ($C^{q u a t)}$), 150.08 ($\left.C^{\text {quat }}\right), 147.13$ (Cquat), $136.27(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, C^{\text {quat }}$), 131.00 ($\left.\mathrm{d}, J=9.2 \mathrm{~Hz}, C^{\text {quar }}\right), 129.68\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right), 128.59\left(\mathrm{C}^{\text {Ar }}\right)$, $128.33\left(C^{\text {Ar }}\right), 127.53\left(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right)$, $125.04\left(\mathrm{C}^{\text {Ar }}\right)$, $122.29\left(\mathrm{C}^{\text {Ar }}\right)$, $121.74\left(\mathrm{C}^{\text {Ar }}\right)$, $121.45\left(\mathrm{C}^{\text {Ar }}\right), 121.18\left(\mathrm{C}^{\mathrm{Ar}}\right), 118.37\left(\mathrm{C}^{\mathrm{Ar}}\right)$, $115.30\left(\mathrm{C}^{\text {Ar }}\right), 70.50\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.30(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), $62.30\left(\mathrm{CH}_{2}-\mathrm{N}\right), 49.20\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 31.96\left(\mathrm{~d}, J=137.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right)$, $29.49\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.24\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) δ 27.43. ${ }^{19} \mathrm{~F}$ NMR (376 MHz, MeOD) δ-59.34. HRMS-ESI (m / z) [M+H]+calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$ 724.2760, found 724.2757.

4.1.14.5. Diethyl \{[4-(2-\{[1-(\{2-[3-(trifluoromethoxy)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]oxy\}phen-oxymethyl)phenyl]methyl\}phosphonate

(15e). The title compound was obtained following the general procedure 5 from benzimidazole 14 e ($36 \mathrm{mg}, 1$ eq., 0.12 mmol), $\mathrm{SOCl}_{2}(244 \mu \mathrm{~L}, 29 \mathrm{eq} ., 3.35 \mathrm{mmol})$ and then compound 11 a ($50 \mathrm{mg}, 1$ eq., 0.12 mmol), diisopropylethylamine ($104 \mu \mathrm{~L}$, 5.3 eq., 0.61 mmol) in $\mathrm{ACN}(2 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound 15 e was obtained as an amorphous creamy solid. (18 mg, 25\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.08$ (d, $J=$ $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 8.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.31(\mathrm{~m}, 3 \mathrm{H}$, $\left.H^{A r}\right), 6.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 4.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4} \mathrm{pip}\right)$,
3.99 (dqd, $J=8.0,7.0,1.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.77 (s, 2H, CH2-N), 3.21 (d, $J=21.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), 2.91 (s, 2H, H${ }^{2}, \mathrm{H}^{6}$ pip), 2.54 (s, 2H, H, H^{6} pip), 1.91 (s, 4H, H ${ }^{3}, \mathrm{H}^{5}$ pip), 1.21 (dt, $J=7.0,0.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C} \operatorname{NMR}(101 \mathrm{MHz}, \mathrm{MeOD}) \delta 150.88$ (Cquat), 150.06 (Cquat), 149.71 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{\text {Ar }}$), 147.15 (Cquat), 136.29 ($\mathrm{d}, J=3.9 \mathrm{~Hz}$, $\left.C^{\text {quat }}\right), 131.78\left(\mathrm{C}^{\text {Ar }}\right), 131.00\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, \mathrm{C}^{\text {quat }}\right), 130.69\left(\mathrm{C}^{\text {quat }}\right), 129.66(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $C^{\text {Ar }}$), 127.51 ($\mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 125.01 ($\mathrm{C}^{\text {Ar }), ~} 122.29$ ($\mathrm{C}^{\text {Ar }}$), 122.21 ($\mathrm{C}^{\text {Ar }), ~} 121.82$ $\left(C^{A r}\right), 121.45\left(C^{A r}\right), 119.27\left(C^{\text {Ar }}\right), 118.92\left(C^{A r}\right), 118.31\left(C^{\text {Ar }}\right), 115.33\left(C^{\text {Ar }}\right), 70.50\left(\mathrm{CH}_{2}-\right.$ O), $62.43\left(\mathrm{CH}_{2}-\mathrm{N}\right), 62.31$ (d, $J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), $49.34\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 32.02$ (d, $J=$ $138.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), $29.67\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.24\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz , MeOD) δ 27.43. ${ }^{19} \mathrm{~F}$ NMR (376 MHz, MeOD) $\delta-59.35$. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$ 724.2760, found 724.2759.

4.1.14.6. Diethyl (\{3-[2-(\{1-[(2-phenyl-1H-1,3-benzodiazol-6-yl)methyl]piperidin-4-

 yl\}oxy)phenoxymethyl]-phenyl\}methyl)phosphonate (16a). The title compound was obtained following the general procedure 5 from benzimidazole 14 a ($22 \mathrm{mg}, 1$ eq., 0.099 mmol$), \mathrm{SOCl}_{2}(210 \mu \mathrm{~L}, 29$ eq., 2.87 mmol) and then compound 11 b (43 mg , 1 eq., 0.099 mmol), diisopropylethylamine ($90 \mu \mathrm{~L}$, 5.3 eq., 0.53 mmol) in ACN (3 $\mathrm{mL})$. After purification by silica gel column chromatography, eluting $\mathrm{DCM} / \mathrm{MeOH} 95: 5$, the clean compound 16a was obtained as an amorphous creamy solid. ($24 \mathrm{mg}, 38 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.09$ ($\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\text {Ar })}$, 7.57 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{Ar})}$, 7.33 (m, $\left.5 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 4.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$ pip), 3.98 (ddq, $J=8.0,7.0,1.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.84 (s, 2H, CH2-N), 3.23 (d, J= $21.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), 2.99 (bs, 2H, H${ }^{2}, \mathrm{H}^{6}$ pip), 2.62 (bs, 2H, H${ }^{2}, \mathrm{H}^{6}$ pip), 1.97 (m, 4H, $\left.\mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.20\left(\mathrm{td}, \mathrm{J}=7.0,1.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 152.28$ (Cquat), 150.16 (Cquat), 147.08 (Cquat), 137.88 (d, $\left.J=3.3 \mathrm{~Hz}, C^{\text {quat }}\right), 131.61(\mathrm{~d}, J=9.4$ $\left.\mathrm{Hz}, C^{\text {quat }}\right), 130.13\left(\mathrm{C}^{\text {Ar }}\right), 129.47$ (Cquat), $129.13\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right)$, $128.78\left(\mathrm{C}^{\text {Ar }}\right)$,128.73 ($\mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), $128.32\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right.$), 126.44 (CAr), $125.92(\mathrm{~d}, J=$ $\left.3.7 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ar}}\right)$, $122.36\left(\mathrm{C}^{\mathrm{Ar}}\right)$, $121.44\left(\mathrm{C}^{\mathrm{Ar}}\right)$, $118.51\left(\mathrm{C}^{\mathrm{Ar}}\right)$, $115.19\left(\mathrm{C}^{\mathrm{Ar}}\right), 70.54\left(\mathrm{CH}_{2}-\mathrm{O}\right)$, 62.35 (d, $\left.J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 62.21\left(\mathrm{CH}_{2}-\mathrm{N}\right), 49.29\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 32.32(\mathrm{~d}, \mathrm{~J}=$ $\left.137.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 29.41\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.25\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz , MeOD) δ 27.36 HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P} 640.2941$, found 640.2938.

4.1.14.7. Diethyl \{[3-(2-\{[1-(\{2-[4-(trifluoromethyl)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)-piperidin-4-yl]oxy\}-phenoxymethyl)phenyl]methyl\}phosphonate

(16b). The title compound was obtained following the general procedure 5 from benzimidazole 14b (34 mg , 1 eq., 0.115 mmol), SOCl_{2} ($243 \mu \mathrm{~L}, 29$ eq., 3.35 mmol) and then compound 11b (50 mg , 1 eq., 0.115 mmol), diisopropylethylamine ($100 \mu \mathrm{~L}$, 5.3 eq., 0.59 mmol) in $\mathrm{ACN}(3 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting $\mathrm{DCM} / \mathrm{MeOH} 95: 5$, the clean compound 16 b was obtained as an amorphous creamy solid. (19 mg, 22\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.45$ (bs, $\left.1 H, H^{A r}\right), 8.36\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.63(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 7.42 (bs, $1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), $7.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), 5.06 (s, 2H, CH2-O), 4.42 (d, J=7.4 Hz, 1H, H ${ }^{4}$ pip), 3.99 (m, 4H, CH2-O-P), 3.80 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}$), 3.25 (d, J=21.7 Hz, 2H, CH2-P), 2.94 (bs, 2H, H ${ }^{2}, \mathrm{H}^{6}$ pip), 2.55 (bs, 2H, $\mathrm{H}^{2}, \mathrm{H}^{6}$ pip), $1.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.22\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101
 $C^{\text {quat }}$), 131.58 ($\mathrm{d}, J=9.5 \mathrm{~Hz}, C^{\text {quat }}$), 131.39 (Cquat), 131.06 ($C^{q u a t), ~} 130.63$ (Cquat), $129.83\left(C^{A r}\right), 129.82\left(C^{A r}\right), 129.77\left(C^{A r}\right), 129.09\left(d, J=6.8 \mathrm{~Hz}, C^{A r}\right), 128.71(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, \mathrm{C}^{\text {Ar }}$), 128.30 ($\mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 126.40 ($\mathrm{C}^{\text {Ar }}$), 125.89 ($\mathrm{d}, J=3.7 \mathrm{~Hz}, C^{\text {Ar }}$), 125.36 $\left(C^{\text {Ar }}\right), 123.06\left(C^{\text {Ar }}\right), 122.23\left(C^{\text {Ar }}\right), 121.45\left(C^{\text {Ar }}\right), 118.38\left(C^{\text {Ar }}\right), 115.28\left(\mathrm{C}^{\text {Ar }}\right), 70.56\left(\mathrm{CH}_{2}-\right.$ O), $62.38\left(\mathrm{CH}_{2}-\mathrm{N}\right), 62.34\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right.$), $49.43\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 32.28(\mathrm{~d}, J=$
$\left.138.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 29.75\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.26\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz , MeOD) $\delta 27.36{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{MeOD}$) δ-64.31. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P} 708.2811$, found 708.2808.

4.1.14.8. Diethyl \{[3-(2-\{[1-(\{2-[3-(trifluoromethyl)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]-oxy\}phenoxymethyl)phenyl]methyl\}phosphonate

 (16c). The title compound was obtained following the general procedure 5 from benzimidazole 14c ($34 \mathrm{mg}, 1$ eq., 0.115 mmol), $\mathrm{SOCl}_{2}(243 \mu \mathrm{~L}, 29 \mathrm{eq} ., 3.35 \mathrm{mmol})$ and then compound 11b (50 mg , 1 eq., 0.115 mmol), diisopropylethylamine ($100 \mu \mathrm{~L}$, 5.3 eq., 0.59 mmol) in $\mathrm{ACN}(3 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound 16c was obtained as an amorphous creamy solid. (20 mg, 24\%) ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 8.40$ (bs, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 8.31\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.28\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.90(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 5.01 (s,2H, CH2-O), 4.36 (s, $1 \mathrm{H}, \mathrm{H}^{4}$ pip), 3.94 (ddq, $J=8.0,7.1,1.0 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.71 (s, 2H, CH2-N), $3.19\left(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right.$), $2.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}\right.$ pip), 2.44 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 1.91 (dd, $J=12.9,8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), 1.16 (dt, $J=7.1,1.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 150.79$ (Cquat), 150.07 (Cquat), 147.25 (Cquat), 137.94 (d, $J=3.2 \mathrm{~Hz}, C^{q u a t), ~} 131.57$ ($d, J=9.4 \mathrm{~Hz}$, $\left.C^{\text {quat }}\right), 131.38\left(C^{\text {quat }}\right), 131.06\left(C^{q u a t}\right), 130.65\left(C^{q u a t}\right), 129.81\left(C^{\text {Ar }}\right), 129.79\left(\mathrm{C}^{\text {Ar }}\right), 129.07$ ($\mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), $128.70\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right.$), $128.29\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right.$), 126.37 $\left(C^{\text {Ar }}\right), 125.88\left(d, J=3.6 \mathrm{~Hz}, C^{\text {Ar }}\right)$, $123.08\left(C^{\text {Ar }}\right)$, $122.15\left(C^{\text {Ar }}\right)$, $121.45\left(C^{\text {Ar }}\right)$, 118.31 ($\mathrm{C}^{\text {Ar }}$), $115.31\left(\mathrm{C}^{\mathrm{Ar}}\right), 70.57\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.53\left(\mathrm{CH}_{2}-\mathrm{N}\right), 62.34\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right)$, $49.56\left(C^{2}, C^{6}\right.$ pip), 32.29 ($d, J=137.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), 29.89 (C^{3}, C^{5} pip), 15.29, 15.26 (d, $\left.J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) $\delta 27.36 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376MHz,MeOD)} \mathrm{\delta}$ -64.31. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P} 708.2811$, found 708.2807.4.1.14.9. Diethyl \{[3-(2-\{[1-(\{2-[4-(trifluoromethoxy)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)-piperidin-4-yl]oxy\}-phenoxymethyl)phenyl]methyl\}phosphonate
(16d). The title compound was obtained following the general procedure 5 from benzimidazole 14 d (37 mg , 1 eq., 0.12 mmol), $\mathrm{SOCl}_{2}(246 \mu \mathrm{~L}, 29$ eq., 3.34 mmol) and then compound 11b ($50 \mathrm{mg}, 1$ eq., 0.12 mmol), diisopropylethylamine ($104 \mu \mathrm{~L}$, 5.3 eq., 0.64 mmol) in $\mathrm{ACN}(3 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound 16d was obtained as an amorphous creamy solid. (19 mg, 31\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.20(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), $7.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.39\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.92(\mathrm{~m}, 2 \mathrm{H}$, $H^{\text {Ar }}$) 5.07 (s, 2H, CH2-O), 4.44 (s, 1H, H ${ }^{4}$ pip), 3.99 (dqd, $J=7.8,6.8,3.0 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.25\left(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 2.98\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}\right.$ pip), 2.60 (bs, 2H, H${ }^{2}, \mathrm{H}^{6}$ pip), $2.06-1.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C} \operatorname{NMR}(101 \mathrm{MHz}, \mathrm{MeOD}) \delta 151.43$ (Cquat), 151.25 (Cquat), 150.14 (Cquat), 147.14 (Cquat), 137.91 ($\mathrm{d}, J=3.3 \mathrm{~Hz}, C^{\text {quat }}$), $131.60\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, C^{q u a t}\right), 129.10(\mathrm{~d}, J$ $\left.=6.4 \mathrm{~Hz}, C^{\text {Ar }}\right), 128.72\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right), 128.60\left(\mathrm{C}^{\text {Ar }}\right), 128.32\left(\mathrm{C}^{\text {Ar }}\right), 128.30(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), $125.90\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right.$), 122.31 ($\left.\mathrm{C}^{\text {Ar }}\right)$, $121.45\left(\mathrm{C}^{\text {Ar }}\right)$, $121.20\left(\mathrm{C}^{\text {Ar }}\right.$), $118.46\left(\mathrm{C}^{\text {Ar }}\right), 115.24\left(\mathrm{C}^{\text {Ar }}\right), 70.55\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.35\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 62.32$ $\left(\mathrm{CH}_{2}-\mathrm{N}\right), 49.34\left(\mathrm{C}^{2}, \mathrm{C}^{6}\right.$ pip), 32.32 (d, $\left.J=137.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 29.57\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.25$ (d, J=6.1 Hz, CH3). ${ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) $\delta 27.36{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{MeOD}$) δ-57.38 HRMS-ESI $(m / z)[M+H]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P} 724.2760$, found 724.2755.

4.1.14.10. Diethyl \{[3-(2-\{[1-(\{2-[3-(trifluoromethoxy)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]oxy\}phenoxymethyl)phenyl]methyl\}phosphonate

(16e). The title compound was obtained following the general procedure 5 from benzimidazole 14 e ($27 \mathrm{mg}, 1$ eq., 0.088 mmol), $\mathrm{SOCl}_{2}(186 \mu \mathrm{~L}, 29$ eq., 2.56 mmol$)$
and then compound 11b (38 mg , 1 eq., 0.088 mmol), diisopropylethylamine ($79 \mu \mathrm{~L}$, 5.3 eq., 0.47 mmol) in $\mathrm{ACN}(2 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound $16 e$ was obtained as an amorphous creamy solid. ($22 \mathrm{mg}, 35 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.06$ (ddd, J $\left.=7.90,1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 8.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.61\left(\mathrm{q}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.33(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 4.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$ pip), 3.94 (dqd, $J=8.2,7.0,1.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), $3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.20(\mathrm{~d}, J=$ $21.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), 2.95 (s,2H, H${ }^{2}, \mathrm{H}^{6}$ pip), 2.57 (s, 2H, H${ }^{2}, \mathrm{H}^{6}$ pip), 1.91 (s, 4H, H ${ }^{3}$, H^{5} pip), $1.21-1.10\left(\mathrm{dt}, J=7.0,0.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) δ 150.93 (Cquat), 150.15 ($C^{\text {quat }), ~} 149.73$ (Cquat), 147.09 ($C^{\text {quat }), ~} 137.88$ ($d, J=3.2 \mathrm{~Hz}$, $C^{\text {quat }}$), 131.73 ($\left.C^{\text {Ar }}\right), 131.61$ ($\mathrm{d}, J=9.3 \mathrm{~Hz}, C^{\text {quat }}$), 130.71 ($C^{\text {Quat }}$), 129.10 ($\mathrm{d}, J=6.5$ $\mathrm{Hz}, \mathrm{C}^{\text {Ar }}$), 128.72 ($\mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 128.31 ($\mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), $125.90(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, \mathrm{C}^{\text {Ar }}$), 125.01 ($\mathrm{C}^{\text {Ar }}$), $122.34\left(\mathrm{C}^{\text {Ar }}\right)$, $121.44\left(\mathrm{C}^{\text {Ar }}\right)$, $118.93\left(\mathrm{C}^{\text {Ar }}\right)$, $118.48\left(\mathrm{C}^{\text {Ar }}\right)$, 115.20 ($\left.C^{\text {Ar }}\right)$, 73.12 (C^{4} pip), $70.53\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.34\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 62.17\left(\mathrm{CH}_{2}-\mathrm{N}\right)$, $49.24\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 32.33\left(\mathrm{~d}, J=137.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right.$), $29.45\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.25(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, \mathrm{CH}_{3}$). ${ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) δ 27.36. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{MeOD}$) $\delta-$ 59.38. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P} 724.2760$, found 724.2757.
4.1.15. 2-(2-Bromophenoxy)tetrahydropyran (18). Under inert atmosphere, dihydropyran ($3.96 \mathrm{~mL}, 1.5$ eq., 43.35 mmol) was added to a solution of 2 bromophenol 17 (3.35 mL , 1 eq., 28.90 mmol) in dichloromethane (35 mL). A catalytic amount of pyridinium p-toluenesulfonate ($726 \mathrm{mg}, 0.1$ eq., 2.89 mmol) was then inserted in the flask, and the mixture was stirred at room temperature for 12 hours. The volatiles were then removed under reduced pressure, and the residue was purified by silica gel column chromatography, eluting pure PE, to afford compound 18 as a colorless oil. (7.43 g, quant.), [47]. CAS : 57999-46-9.

4.1.16. tert-Butyl 4-[hydroxy-(2-tetrahydropyran-2-yloxyphenyl)methyl]

 piperidine-1-carboxylate (19). Under Ar atmosphere, compound 18 (1 g, 1 eq., 3.89 mmol) was dissolved in THF (8 mL) and cooled at $-78^{\circ} \mathrm{C}$. After stirring for 5 minutes, n-BuLi (2.5 M in hexane, 1.56 mL , 1 eq., 3.89 mmol) was added dropwise to the mixture and stirred 30 min . at $-78{ }^{\circ} \mathrm{C}$. A solution of 1-(tert-Butoxycarbonyl)-4piperidinecarboxaldehyde (830 mg , 1 eq., 3.89 mmol) in THF (8 mL) was then slowly introduced by cannulation into the flask. After 10 min at $-78^{\circ} \mathrm{C}$, the solution was then allowed to stir at room temperature for 3 hours and quenched by a slow addition of water (10 mL). The aqueous phase was subsequently extracted three times with ethyl acetate ($3 \times 30 \mathrm{~mL}$) and the resulted organic layers dried over MgSO_{4} and concentrated under reduced pressure. The resulting product was then loaded onto a silica gel column and purified eluting Petroleum ether / Ethyl Acetate 8:2 to afford desired piperidine derivative 19 as white solid. ($914 \mathrm{mg}, 60 \%$) ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.97\left(\mathrm{dt}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}-\mathrm{O})$, $4.62(\mathrm{dt}, J=12.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{OH}), 4.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}\right), 3.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right)$, $3.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 2.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}, \mathrm{H}^{2}, \mathrm{H}^{6}\right), 1.79\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{H}^{3}, \mathrm{H}^{4}, \mathrm{H}^{5}\right) 1.42(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Boc}\right), 1.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}\right)$. HRMS (ESI): m/z [M+H]+ calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{5} 392.2438$ found 392.2433 .4.1.17. 1-(Benzyloxy)-2-bromobenzene (20). To a solution of 2-bromophenol (17) $(1.34 \mathrm{~mL}, 1$ eq., 11.6 mmol$)$ in DMF (20 mL), benzyl chloride ($1.46 \mathrm{~mL}, 1.1$ eq., 12.7 mmol) and potassium carbonate ($3.19 \mathrm{~g}, 2$ eq., 23.1 mmol) were added. The resulting mixture was stirred for 12 h at $70^{\circ} \mathrm{C}$. After evaporation of all volatiles, the residue was dissolved in a mixture of EtOAc (80 mL) and water (40 mL). The aqueous phase was extracted thrice with EtOAc $(3 \times 80 \mathrm{~mL})$, the organic phases were washed three times with water ($3 \times 40 \mathrm{~mL}$), three times with brine $(3 \times 40 \mathrm{~mL})$,
dried over MgSO4 and concentrated under reduced pressure. After a filtration on silica gel, eluting petroleum ether/ ethyl acetate $8: 2$, the desired product 20 was obtained as a colorless oil. (3.1 g, quant.), [48]. CAS : 31575-75-4.

4.1.18. tert-butyl 4-\{[2-(benzyloxy)phenyl](hydroxy)methyl\}piperidine-1-

 carboxylate (21). Under Ar atmosphere, bromobenzene 20 ($3.36 \mathrm{~g}, 1.1$ eq., 12.7 mmol) was dissolved in THF (19 mL) and cooled at $-78{ }^{\circ} \mathrm{C}$. After stirring for 10 minutes, n - $\mathrm{BuLi} \quad(2.5 \mathrm{M}$ in hexane, 5.03 mL , 1.1 eq. 12.7 mmol) was added dropwise to the solution and stirred 30 min . at $-78{ }^{\circ} \mathrm{C}$. A mixture of 1-(tert-Butoxycarbonyl)-4-piperidinecarboxaldehyde ($2.47 \mathrm{~g}, 1 \mathrm{eq} ., 11.6$ mmol) in THF (19 mL) was then slowly introduced by cannulation into the flask. After 10 min at $-78^{\circ} \mathrm{C}$, the solution was then allowed to stir at room temperature for 3 hours and quenched by the slow addition of water (20 mL). The aqueous phase was subsequently extracted three times with ethyl acetate ($3 \times 80 \mathrm{~mL}$) and the resulted organic layers dried over MgSO_{4} and concentrated under reduced pressure. The resulting product was then loaded onto a silica gel column and purified eluting Petroleum ether / Ethyl Acetate 8:2 to afford desired piperidine derivative 21 as colorless crystals. (2.94 g, 65\%). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.22$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{\text {Ar }}$), 6.94 (m, 2H, $\mathrm{H}^{\text {Ar }}$), 5.08 (s, 2H, $\mathrm{CH}_{\text {2benzylic }}$), 4.61 (bs, $1 \mathrm{H}, \mathrm{CH}-\mathrm{OH}$), 4.01 (m, 2H, $\mathrm{H}^{2}, \mathrm{H}^{4}, \mathrm{H}^{6}$ pip), $2.53\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{4}, \mathrm{H}^{6} \mathrm{pip}\right), 1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.43(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Boc}\right), 1.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.77(\mathrm{C}=\mathrm{O})$, 154.86 (Cquat), 136.66 (Cquat), 131.05 (Cquat), 128.71 ($C^{\text {Ar }), ~} 128.46\left(\mathrm{C}^{\text {Ar }}\right), 128.29\left(\mathrm{C}^{\text {Ar }}\right)$, $128.15\left(\mathrm{C}^{\text {Ar }}\right), 127.32\left(\mathrm{C}^{\text {Ar }}\right), 121.02\left(\mathrm{C}^{\text {Ar }}\right), 112.01\left(\mathrm{C}^{\text {Ar }}\right), 79.24\left(\mathrm{C}^{\text {quat }} \mathrm{Boc}\right), 75.05(\mathrm{CH}-$ OH), 70.24 ($\mathrm{CH}_{\text {2benzylic }} 43.93$ (C^{4} pip), 42.56 ($\mathrm{C}^{2}, \mathrm{C}^{6}$ pip), 28.74 ($\mathrm{C}^{3}, \mathrm{C}^{5}$ pip), 28.47 $\left(\mathrm{CH}_{3} \quad \mathrm{Boc}\right), \quad 28.25 \quad\left(\mathrm{C}^{3}, \quad \mathrm{C}^{5} \quad \mathrm{pip}\right) . \quad \mathrm{HRMS}-\mathrm{ESI} \quad(\mathrm{m} / \mathrm{z}) \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{4}$ 398.2332, found 398.2326.
4.1.19. tert-Butyl 4-\{[2-(benzyloxy)phenyl](hydroxy)methyl\}piperidine-1-

 carboxylate (22). Method A : In an autoclave, piperidine derivative 21 (1 g, 1 eq., $2.55 \mathrm{mmol})$ was dissolved in ethyl acetate (43 mL). The solution and the atmosphere in the apparatus were degassed with argon before the addition of $10 \% \mathrm{Pd} / \mathrm{C}(500$ $\mathrm{mg})$. The solution and the atmosphere were again saturated with argon, and then the autoclave was sealed and filled with H_{2} until a pressure of 7 bars. The reaction mixture was stirred for 24 h at room temperature, filtrated onto Celite ${ }^{\circledR}$.The filtrate was evaporated, giving pure product 22 as colorless crystals. (733 mg , quant.) Method B : Under inert atmosphere, compound 19 ($200 \mathrm{mg}, 1$ eq., 0.51 mmol) was dissolved in dichloromethane (4 mL). Triethylsilane ($408 \mu \mathrm{~L}, 5$ eq., 2.55 mmol) and TFA ($196 \mu \mathrm{~L}$, 5 eq., 2.55 mmol) were successively added to this solution, and stirred at room temperature for 1 hour. The reaction was quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, washed with brine (10 mL), dried over MgSO_{4} and concentrated under reduced pressure. The product was then purified by a flash column chromatography (PE/EtOAc 95:5), affording desired product 22 as colorless crystals. ($30 \mathrm{mg}, 21 \%)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03$ (m, $\left.2 H, H^{\text {Ar }}\right), 6.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.01\left(\mathrm{bd}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}\right.$ pip), $4.01\left(\mathrm{bt}, \mathrm{J}=11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6} \mathrm{pip}\right), 2.53\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$ pip), 1.59 (bd, $\left.J=14.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Boc}\right), 1.15(\mathrm{bd}, J=11.9$, $\left.4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.04(\mathrm{C}=\mathrm{O}), 154.06$ (Cquat $\left.\mathrm{CH}_{2}\right)$, $131.23\left(\mathrm{C}^{\text {Ar }}\right), 127.21\left(\mathrm{C}^{\text {Ar }}\right), 126.51\left(\mathrm{C}^{\text {quat }}-\mathrm{OH}\right), 120.22\left(\mathrm{C}^{\text {Ar }}\right), 115.26\left(\mathrm{C}^{\text {Ar }}\right)$, 79.45 (C $\mathrm{C}^{\text {quat }} \mathrm{Boc}$), $44.10\left(\mathrm{C}^{4} \mathrm{pip}\right), 36.88\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 36.80\left(\mathrm{CH}_{2}\right), 31.98\left(\mathrm{C}^{3}, \mathrm{C}^{5}\right.$ pip), $28.50\left(\mathrm{CH}_{3} \mathrm{Boc}\right)$. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} 292.1913$, found 292.1906.[(diethoxyphosphoryl)methyl]phenyl\}methoxy)phenyl] methyl\}piperidine-1carboxylate (23a). In a 10-20 mL microwave vial, phosphonate derivative 2a (1.32 $\mathrm{mg}, 1.5$ eq., 4.12 mmol) was dissolved in DMA (20 mL). To this mixture were sequentially added potassium carbonate ($760 \mathrm{mg}, 2$ eq., 5.49 mol), phenol 22 (800 $\mathrm{mg}, 1$ eq., 2.45 mmol) and finally a catalytic amount of sodium iodide (few crystals). This reaction was stirred for 30 min at $140^{\circ} \mathrm{C}$ under microwave irradiation, and the obtained solution was dissolved in water (20 mL) and diethyl ether (100 mL). The aqueous phase was then extracted twice ethyl acetate $(2 \times 50 \mathrm{~mL})$, and the organic phases washed with water ($5 \times 40 \mathrm{~mL}$), once with brine $(40 \mathrm{~mL})$, dried over MgSO_{4} and evaporated. The residue was consequently purified by column chromatography (DCM/MeOH 99:1) to afford the intermediate 23a as a white solid, which was directly engaged in the next step.

4.1.21.
 tert-Butyl
 4-\{[2-(\{3-

[(diethoxyphosphoryl)methyl]phenyl\}methoxy)phenyl] methyl\}piperidine-1carboxylate (23b). In a 2-5 mL microwave vial, phosphonate derivative 2b (331 mg, 1.5 eq., 1.03 mmol) was dissolved in DMA (5 mL). To this mixture were sequentially added potassium carbonate ($190 \mathrm{mg}, 2$ eq., 1.37 mol), phenol 22 ($200 \mathrm{mg}, 1$ eq., 0.69 mmol) and finally a catalytic amount of sodium iodide (few crystals). This reaction was stirred for 30 min at $140{ }^{\circ} \mathrm{C}$ under microwave irradiation, and the obtained solution was dissolved in water (10 mL) and ethyl acetate (50 mL). The aqueous phase was then extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), and the organic phases washed with water ($5 \times 10 \mathrm{~mL}$), once with brine (10 mL), dried over MgSO_{4} and evaporated. The residue was consequently purified by column chromatography (DCM/MeOH 99:1) to afford 23b compound as a colorless oil. (330 mg, 91\%) ${ }^{1} \mathrm{H}$

NMR (400 MHz, CDCl 3) $\delta 7.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar} r}\right), 5.01$ (s, 2H, CH2-O), 3.96 (m, 6H, CH2-O-P, H${ }^{2}, H^{6}$ pip), 3.10 (d, J=21.6 Hz, 2H, CH2-P), $2.55\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}, \mathrm{H}^{2}, \mathrm{H}^{6} \mathrm{pip}\right), 1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$ pip), $1.56(\mathrm{bd}, J=14.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), 1.39 (s, 9H, CH3 Boc), 1.17 (m, $8 \mathrm{H}, \mathrm{CH}_{3}$ Phosph, $\mathrm{H}^{3}, \mathrm{H}^{5}$ pip). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.58\left(\mathrm{C}^{\text {quat }}-\mathrm{CH}_{2}\right), 154.86(\mathrm{C}=\mathrm{O}), 137.79(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}$, Cquat), 131.90 ($\mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, C^{\text {quat }}$), 131.01 ($\mathrm{C}^{\text {Ar }}$), 129.17 ($\mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 129.04 (Cquat), 128.73 ($\mathrm{d}, J=3.4 \mathrm{~Hz}, C^{\text {Ar }}$), 128.35 ($\mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 127.18 (CAr), 125.51
 62.15 (d, $J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), $44.28\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 37.34\left(\mathrm{CH}_{2}\right), 36.66\left(\mathrm{C}^{4} \mathrm{pip}\right), 33.82$ (d, $J=138.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), $32.15\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 28.46\left(\mathrm{CH}_{3} \mathrm{Boc}\right), 16.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right){ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) δ 26.22. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{P} 532.2828$, found 532.2819.

4.1.22.1 Diethyl (\{4-[2-(piperidin-4-ylmethyl)phenoxymethyl]phenyl\}

methyl)phosphonate (24a). Following general procedure 2, trifluoroacetic acid (18.9 $\mathrm{mL}, 100$ eq., 245 mmol) was added to a solution of 23a in DCM (15 mL). Pure compound 24a was obtained after flash column chromatography (DCM/MeOH 95:5), affording desired product as a light brown solid. (356 mg, 88\%) ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD) $\delta 7.43\left(\mathrm{~d}, ~ J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.34\left(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), $7.15(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 7.01 (dd, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), $6.88\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.10(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{O}$), 4.04 (dq, $J=7.3,7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), 3.35 (under MeOD peak, m, 2H, H${ }^{2}$, H^{6} pip), 3.26 (under MeOD peak, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), 2.86 (dt, $J=12.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 2.66 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.93 (m, 1H, H ${ }^{4}$ pip), 1.82 (bd, $J=15.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}^{3}, \mathrm{H}^{5}$ pip), 1.42 (dq, $\left.J=12.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.26\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 156.65\left(\mathrm{C}^{\text {quat }}-\mathrm{CH}_{2}\right), 136.36(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, Cquat), 131.03 ($d, J=9.4 \mathrm{~Hz}, C$ quat), $130.60\left(C^{\text {Ar }}\right), 129.76\left(d, J=6.8 \mathrm{~Hz}, C^{\text {Ar }}\right), 127.62\left(C^{\text {Ar }}\right)$,
$127.38\left(\mathrm{C}^{\text {Ar }}\right)$, $127.32\left(\mathrm{C}^{\text {Ar }}\right)$, $120.44\left(\mathrm{C}^{\text {Ar }}\right)$, $120.35\left(\mathrm{C}^{\text {Ar }}\right)$, $111.87\left(\mathrm{C}^{\text {Ar }}\right), 69.36\left(\mathrm{CH}_{2}-\mathrm{O}\right), 63.33$ (d, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 43.88\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 36.09\left(\mathrm{CH}_{2}\right), 34.35\left(\mathrm{C}^{4} \mathrm{pip}\right), 31.96(\mathrm{~d}, J=$ $138.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), $28.56\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.24\left(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) δ 27.49. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{P} 432.2304$, found 432.2306.

4.1.22.2 Diethyl (\{3-[2-(piperidin-4-ylmethyl)phenoxymethyl]phenyl\}

 methyl)phosphonate (24b). Following general procedure 2, trifluoroacetic acid (4.5 $\mathrm{mL}, 100$ eq., 58.3 mmol) was added to a solution of compound $\mathbf{2 3 b}$ ($310 \mathrm{mg}, 1$ eq., 0.58 mmol) in DCM (9 mL). Pure compound 24b was obtained after flash column chromatography (DCM/MeOH 95:5), affording desired product colorless oil. (235 mg , 94\%) ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 7.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.26\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.11$ (dt, $J=$ $7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 7.06 (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}$), $6.93\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right.$), 6.83 (dt, $J=7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}$), 5.01 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.96 (m, 4H, CH2-O-P), 3.27 (m, 2H, H ${ }^{2}, H^{6}$ pip), 3.21 (d, $J=21.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}$), $2.80(\mathrm{dt}, J=12.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}^{2}, \mathrm{H}^{6}$ pip), $2.61\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4} \mathrm{pip}\right), 1.75(\mathrm{bd}, \mathrm{J}=14.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), 1.45 (dq, $J=13.0,10.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), 1.17 (t, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 157.91$ (Cquat $\left.-\mathrm{CH}_{2}\right), 139.20\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{C}^{\text {quat }}\right)$, $133.95\left(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, \mathrm{C}\right.$ quat), $131.97\left(\mathrm{C}^{\text {Ar }}\right), 130.47\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, C^{\text {Ar }}\right.$), $129.82(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, C^{\text {Ar }}$), $129.74\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, C^{\text {Ar }}\right), 129.02$ (Cquat), $128.72\left(\mathrm{C}^{\text {Ar }}\right), 127.05(\mathrm{~d}, J=3.7$ $\left.\mathrm{Hz}, \mathrm{C}^{\mathrm{Ar}}\right)$, 121.76(C $\left.{ }^{\mathrm{Ar}}\right)$, $113.04\left(\mathrm{C}^{\mathrm{Ar}}\right)$, $70.61\left(\mathrm{CH}_{2}-\mathrm{O}\right), 63.79\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right)$, 45.11($\mathrm{C}^{2}, \mathrm{C}^{6}$ pip), $37.31\left(\mathrm{CH}_{2}\right), 35.84$ (C^{4} pip), 33.54 (d, $J=138.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}$), 29.73 (C², C ${ }^{5}$ pip), $16.62\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right){ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) $\delta 27.01$. HRMS$\mathrm{ESI}(\mathrm{m} / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{P} 432.2304$, found 432.2299.4.1.23.1. Diethyl (\{4-[2-(\{1-[(2-phenyl-1H-1,3-benzodiazol-6-yl)methyl]piperidin-4-yl\}methyl)phenoxy-methyl]phenyl\}-methyl)phosphonate (25a). The title
compound 25a was obtained following the general procedure 5 from benzimidazole 14a (26 mg , 1 eq., 0.12 mmol), $\mathrm{SOCl}_{2}(246 \mu \mathrm{~L}, 29 \mathrm{eq} ., 3.37 \mathrm{mmol})$ and then compound 24a ($50 \mathrm{mg}, 1$ eq., 0.12 mmol), diisopropylethylamine ($105 \mu \mathrm{~L}, 5.3 \mathrm{eq}$., $0.61 \mathrm{mmol})$ in $\mathrm{ACN}(3 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound 25a was obtained as an amorphous creamy solid. (13 mg, 18\%) ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.11$ (dd, $J=8.0,2.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.42\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.33(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), $7.16(\mathrm{dt}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10\left(\mathrm{dd}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.98(\mathrm{~d}, J=$ $\left.8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.86\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 4.02\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\right.$ O-P, CH2-N), $3.25\left(\mathrm{~d}, J=21.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 3.18\left(\mathrm{bd}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6} \mathrm{pip}\right)$, 2.64 (d, J = $6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.47 (bs, 2H, H${ }^{2}, \mathrm{H}^{6}$ pip), 1.82 (m, 1H, H^{4} pip), 1.74 (bd, $J=14.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), $1.45\left(\mathrm{dq}, J=11.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}\right.$ pip), $1.24(\mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}(101 \mathrm{MHz}, \mathrm{MeOD}) \delta 156.62\left(\mathrm{C}^{q u a t}-\mathrm{CH}_{2}\right), 153.11$ (Cquat), 136.42 ($\left.\mathrm{d}, J=4.3 \mathrm{~Hz}, C^{\text {quat }}\right), 130.93\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, C^{\text {quat }}\right), 130.57\left(\mathrm{C}^{\text {Ar }}\right), 130.24$
 $\left.J=3.2 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right)$, $128.29\left(\mathrm{C}^{\text {Ar }}\right), 127.13\left(\mathrm{C}^{\mathrm{Ar}}\right)$, $126.49\left(\mathrm{C}^{\mathrm{Ar}}\right), 120.25\left(\mathrm{C}^{\mathrm{Ar}}\right)$, $111.74\left(\mathrm{C}^{\mathrm{Ar}}\right)$, $69.26\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.30\left(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 61.89\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.69\left(\mathrm{C}^{2}, \mathrm{C}^{6}\right.$ pip), $36.24\left(\mathrm{CH}_{2}\right), 35.25\left(\mathrm{C}^{4} \mathrm{pip}\right), 31.88\left(\mathrm{~d}, J=138.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 30.13\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.24$ $\left(\mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right){ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) δ 27.27. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ 638.3146, found 638.3144 .
4.1.23.2. Diethyl (\{3-[2-(\{1-[(2-phenyl-1H-1,3-benzodiazol-6-yl)methyl]piperidin-4-yl\}methyl)phenoxymethyl]-phenyl\}methyl)phosphonate (26a). The title compound 26a was obtained following the general procedure 5 from benzimidazole 14a ($26 \mathrm{mg}, 1$ eq., 0.12 mmol), $\mathrm{SOCl}_{2}(246 \mu \mathrm{~L}, 29$ eq., 3.37 mmol) and then compound 24b ($50 \mathrm{mg}, 1$ eq., 0.12 mmol), diisopropylethylamine ($105 \mu \mathrm{~L}, 5.3$ eq.,
$0.61 \mathrm{mmol})$ in ACN (3 mL). After purification by silica gel column chromatography, eluting $\mathrm{DCM} / \mathrm{MeOH}$ 95:5, the clean compound 26a was obtained as an amorphous creamy solid. (20 mg, 24\%) ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 8.10$ (dd, $J=8.1,2.7 \mathrm{~Hz}$, $\left.2 H, H^{A r}\right), 7.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), $7.62\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right.$), $7.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), $7.42(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.32\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.15(\mathrm{dt}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}$, $J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$) , $6.98\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), $6.86(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$, $H^{\text {Ar }}$), 5.07 (s, 2H, CH2-O), $3.96\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}, \mathrm{CH}_{2}-\mathrm{N}\right.$), $3.24(\mathrm{~d}, J=21.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{P}$), 3.18 (bd, $\left.J=11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6} \mathrm{pip}\right), 2.64\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), $1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$ pip), 1.74 (bd, $J=14.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), $1.45(\mathrm{bq}$, $\left.J=14.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.20\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, MeOD) $\delta 156.59\left(C^{\text {quat }}-\mathrm{CH}_{2}\right), 153.14$ ($\left.\mathrm{C}^{\text {quat }}\right), 149.72\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{\text {quat }}\right), 138.00(\mathrm{~d}$, $\left.J=3.4 \mathrm{~Hz}, C^{q u a t}\right), 131.64\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, C^{q u a t}\right), 130.59\left(\mathrm{C}^{\text {Ar }}\right), 130.25\left(\mathrm{C}^{\text {Ar }}\right), 129.37$ ($C^{\text {Ar }}$), 129.04 ($\mathrm{d}, J=6.7 \mathrm{~Hz}, C^{\text {Ar }}$), 128.82 ($C^{\text {Ar }}$), 128.43 ($d, J=6.5 \mathrm{~Hz}, C^{\text {Ar }}$), 128.34 (d , $\left.J=3.2 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right), 128.29\left(\mathrm{C}^{\text {Ar }}\right), 127.17\left(\mathrm{C}^{\text {Ar }}\right), 126.50\left(\mathrm{C}^{\text {Ar }}\right), 125.72\left(\mathrm{C}^{\text {Ar }}\right), 125.62(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 120.31 ($\left.\mathrm{C}^{\text {Ar }}\right)$, $111.65\left(\mathrm{C}^{\text {Ar }}\right), 69.23\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.38\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\right.$ P), $61.80\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.70\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 36.13\left(\mathrm{CH}_{2}\right), 35.38\left(\mathrm{C}^{4} \mathrm{pip}\right), 32.30(\mathrm{~d}, \mathrm{~J}=137.8$ $\mathrm{Hz}, \mathrm{CH}_{2}-\mathrm{P}$), $30.07\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.26\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right){ }^{31} \mathrm{P} \mathrm{NMR}(162 \mathrm{MHz}$, MeOD) δ 27.27. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ 638.3146, found 638.3141.

4.1.23.3. Diethyl \{[3-(2-\{[1-(\{2-[4-(trifluoromethyl)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]methyl\}-phenoxymethyl)phenyl]methyl\}phosphonate

 (26b). The title compound 26b was obtained following the general procedure 5 from benzimidazole 14b ($60 \mathrm{mg}, 1$ eq., 0.20 mmol), $\mathrm{SOCl}_{2}(452 \mu \mathrm{~L}, 29$ eq., 6.20 mmol$)$ and then compound 24b (80 mg , 1 eq., 0.20 mmol), diisopropylethylamine ($168 \mu \mathrm{~L}$, 5.3 eq., 0.99 mmol) in $\mathrm{ACN}(4 \mathrm{~mL})$. After purification by silica gel columnchromatography, eluting DCM/MeOH 95:5, the clean compound 26b was obtained as an amorphous creamy solid. (24 mg, 19\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}$, $H^{\text {Ar }}$), $8.37\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right.$), $7.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.14(\mathrm{dd}, J=$ $7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.01 (dd, $\left.J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.88\left(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right.$), 5.08 (s, 2H, CH2-O), 4.26 (s, 2H, CH2-N), 3.99 (dqd, $J=9.5,7.1,1.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-$ P), 3.38 (under MeOD peak, m, 2H, $\mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 3.22 (under MeOD peak, m, 2H, $\mathrm{CH}_{2}-\mathrm{P}$), $2.81\left(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6} \mathrm{pip}\right), 2.68\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}^{4}$ pip), 1.82 (bd, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}$ pip), $1.55\left(\mathrm{bt}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}\right.$ pip), 1.21 (td, $\left.J=7.1,0.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}(101 \mathrm{MHz}, \mathrm{MeOD}) \delta 156.60\left(\mathrm{C}^{\text {quat }}\right.$ CH_{2}), 151.84 (Cquat), 137.93 (d, $J=3.3 \mathrm{~Hz}, C^{\text {quat }}$), 131.69 ($\mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{C}$ quat) ,
 $6.6 \mathrm{~Hz}, C^{\text {Ar }}$), $128.45\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, C^{\text {Ar }}\right)$, $128.34\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, C^{\text {Ar }}\right)$, 127.88 (C $\mathrm{C}^{\text {Ar }}$),
 $111.68\left(\mathrm{C}^{\mathrm{Ar}}\right), 69.24\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.41\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 60.93\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.34$ ($\mathrm{C}^{2}, \mathrm{C}^{6}$ pip), $35.70\left(\mathrm{CH}_{2}\right), 34.86\left(\mathrm{C}^{4} \mathrm{pip}\right), 32.16\left(\mathrm{~d}, \mathrm{~J}=138.0 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 29.22\left(\mathrm{C}^{3}, \mathrm{C}^{5}\right.$ pip), $15.24\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right){ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) δ 27.22. ${ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{MeOD}) \delta$-64.36. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P} 706.3022$, found 706.3013 .

4.1.23.4. Diethyl \{[3-(2-\{[1-(\{2-[3-(trifluoromethyl)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]methyl-\}phenoxymethyl)phenyl]methyl\}phosphonate

(26c). The title compound 26c was obtained following the general procedure 5 from benzimidazole 14c (60 mg , 1 eq. 0.20 mmol), $\mathrm{SOCl}_{2}(452 \mu \mathrm{~L}, 29 \mathrm{eq} ., 6.20 \mathrm{mmol}$) and then compound 24b ($80 \mathrm{mg}, 1$ eq., 0.20 mmol), diisopropylethylamine ($168 \mu \mathrm{~L}, 5.3$ eq., 0.99 mmol) in $\mathrm{ACN}(4 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound 26c was obtained as
an amorphous creamy solid. (26 mg, 20\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 8.46$ (s, 1H, $\left.H^{\text {Ar }}\right), 8.37\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.85\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.79(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right)$, $7.16\left(\mathrm{dt}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.11\left(\mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.99(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}$), 6.87 (td, $\left.J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 3.97(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}, \mathrm{CH}_{2}-\mathrm{N}$), $3.26\left(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 3.13\left(\mathrm{bd}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}\right.$ pip), 2.65 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.38 (bs, $2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}$ pip), 1.78 (m, 1H, H ${ }^{4}$ pip), 1.73 (bd, $\left.J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.44\left(\mathrm{bq}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.22(\mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}(101 \mathrm{MHz}, \mathrm{MeOD}) \delta 156.59\left(\mathrm{C}^{\text {quat }}-\mathrm{CH}_{2}\right), 151.20$ (Cquat), $138.03\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, C^{\text {quat }}\right), 131.63\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, C^{q u a t}\right), 131.42$ (Cquat), 131.10 ($\left.C^{q u a t}\right), 130.59\left(C^{\text {Ar }}\right), 130.55\left(C^{\text {Ar }}\right), 129.87\left(C^{\text {Ar }}\right), 129.83\left(C^{\text {Ar }}\right), 129.02(\mathrm{~d}, \mathrm{~J}=$ $\left.6.4 \mathrm{~Hz}, C^{A r}\right), 128.46\left(C^{A r}\right), 128.37\left(\mathrm{~d}, J=4.4 \mathrm{~Hz}, C^{A r}\right), 128.33\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right)$, 127.09 ($\left.C^{\text {Ar }}\right), 126.50\left(C^{\text {Ar }}\right), 125.60\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C^{\text {Ar }}\right), 125.34\left(C^{\text {Ar }}\right), 123.12(\mathrm{~d}, J=4.1$ $\left.\mathrm{Hz}, \mathrm{C}^{\text {Ar }}\right)$, $122.64\left(\mathrm{C}^{\text {Ar }}\right), 120.26\left(\mathrm{C}^{\text {Ar }}\right), 111.64\left(\mathrm{C}^{\text {Ar }}\right), 69.22\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.36(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}$), $62.12\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.87\left(\mathrm{C}^{2}, \mathrm{C}^{6}\right.$ pip), $36.33\left(\mathrm{CH}_{2}\right), 35.64$ ($\left.\mathrm{C}^{4} \mathrm{pip}\right), 32.30$ (d, $\left.J=137.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 30.46\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.25\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, MeOD) δ 27.29. ${ }^{19}$ F NMR (376 MHz, MeOD) $\delta-64.34$ HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P} 706.3022$, found 706.3013.

4.1.23.5. Diethyl \{[3-(2-\{[1-(\{2-[4-(trifluoromethoxy)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]methyl\}-phenoxymethyl)phenyl]methyl\}phosphonate

(26d). The title compound 26d was obtained following the general procedure 5 from benzimidazole 14d (60 mg , 1 eq., 0.20 mmol), $\mathrm{SOCl}_{2}(452 \mu \mathrm{~L}, 29$ eq., 6.20 mmol) and then compound 24b ($80 \mathrm{mg}, 1$ eq., 0.20 mmol), diisopropylethylamine ($168 \mu \mathrm{~L}$, 5.3 eq., 0.99 mmol) in $\mathrm{ACN}(4 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound 26d was obtained as
an amorphous creamy solid. (31 mg, 24\%) ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 8.21$ (d, $J=$ $\left.8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.49\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right)$, $7.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.16(\mathrm{dt}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12\left(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right)$, $7.00\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.88\left(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right)$, $4.00\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.27\left(\mathrm{~d}, J=21.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 3.18(\mathrm{bd}, J=11.8$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6} \mathrm{pip}\right), 2.67\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47$ (bs, 2H, H$\left.{ }^{2}, \mathrm{H}^{6} \mathrm{pip}\right), 1.81$ (m, $1 \mathrm{H}, \mathrm{H}^{4}$ pip), 1.75 (bd, $\left.J=15.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.46\left(\mathrm{bq}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}\right.$ pip), $1.22\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 156.60\left(\mathrm{C}^{\text {quat }}-\mathrm{CH}_{2}\right)$, 151.64 (Cquat), 150.52 (Cquat), $138.00\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, C^{\text {quat }}\right), 131.64(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $\left.C^{q u a t}\right), 130.59\left(C^{\text {Ar }}\right), 129.03\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, C^{\text {Ar }}\right), 128.50\left(C^{\text {Ar }}\right), 128.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $\left.C^{\text {Ar }}\right)$, $128.38\left(C^{\text {Ar }}\right), 128.33\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, C^{\text {Ar }}\right)$, $127.15\left(\mathrm{C}^{\text {Ar }}\right), 125.62(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $\left.C^{\text {Ar }}\right)$, $125.34\left(C^{\text {Ar }}\right), 123.12\left(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}\right)$, $121.74\left(\mathrm{C}^{\text {Ar }}\right)$, $121.25\left(\mathrm{C}^{\text {Ar }}\right), 120.29$ ($\left.\mathrm{C}^{\text {Ar }}\right)$, $119.20\left(\mathrm{C}^{\text {Ar }}\right), 111.65\left(\mathrm{C}^{\text {Ar }}\right), 69.23\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.38\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right)$, $61.90\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.87\left(\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}\right), 36.20\left(\mathrm{CH}_{2}\right), 35.45\left(\mathrm{C}^{4} \mathrm{pip}\right), 32.26(\mathrm{~d}, \mathrm{~J}=137.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 30.19\left(\mathrm{C}^{3}, \mathrm{C}^{5} \mathrm{pip}\right), 15.25\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right){ }^{31} \mathrm{P} \mathrm{NMR}(162 \mathrm{MHz}$, MeOD) δ 27.27. ${ }^{19} \mathrm{~F}$ NMR (376 MHz, MeOD) δ-59.39. HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P} 722.2971$, found 722.2965 .

4.1.23.6. Diethyl \{[3-(2-\{[1-(\{2-[3-(trifluoromethoxy)phenyl]-1H-1,3-benzodiazol-6-yl\}methyl)piperidin-4-yl]methyl\}-phenoxymethyl)phenyl]methyl\}phosphonate

(26e). The title compound $\mathbf{2 6 e}$ was obtained following the general procedure 5 from benzimidazole 14 e ($60 \mathrm{mg}, 1$ eq., 0.20 mmol), $\mathrm{SOCl}_{2}(452 \mu \mathrm{~L}, 29$ eq., 6.20 mmol) and then compound 24b ($80 \mathrm{mg}, 1$ eq., 0.20 mmol), diisopropylethylamine ($168 \mu \mathrm{~L}$, 5.3 eq., 0.99 mmol) in $\mathrm{ACN}(4 \mathrm{~mL})$. After purification by silica gel column chromatography, eluting DCM/MeOH 95:5, the clean compound $\mathbf{2 6 e}$ was obtained as an amorphous creamy solid. (26 mg, 20\%) ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.10$ (ddd, J
$\left.=7.8,1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 8.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.66\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 7.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right)$, $7.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right), 7.14(\mathrm{dt}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10\left(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {Ar }}\right)$, $6.98\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 6.86\left(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right)$, 3.98 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}, \mathrm{CH}_{2}-\mathrm{N}$), $3.25\left(\mathrm{~d}, J=21.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right.$), 3.17 (bd, $J=10.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6} \mathrm{pip}\right), 2.64\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47\left(\mathrm{bt}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}\right.$ pip), 1.81 (m, 1H, H^{4} pip), 1.74 (bd, $\left.J=13.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.45(\mathrm{bq}, J=13.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5} \mathrm{pip}\right), 1.20\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) δ $156.58\left(C^{\text {quat }}-\mathrm{CH}_{2}\right), 151.29\left(\mathrm{C}^{\text {quat }}\right), 149.72\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{\text {quat }}\right), 137.99(\mathrm{~d}, J=3.3$ $\left.\mathrm{Hz}, C^{\text {quat }}\right), 131.63$ (Cquat), 131.61 ($\mathrm{d}, J=9.9 \mathrm{~Hz}$, C ${ }^{\text {quat }}$), 130.75 ($\mathrm{C}^{\text {Ar }), ~} 130.58$ ($\mathrm{C}^{\text {Ar })}$, 129.02 ($\mathrm{d}, J=7.1 \mathrm{~Hz}, C^{\text {Ar }}$), 128.41 ($\mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 128.36 ($\mathrm{C}^{\text {Ar }}$), 128.34 ($\mathrm{d}, J=$ $3.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), $127.15\left(\mathrm{C}^{\text {Ar }}\right)$, 125.61 ($\mathrm{d}, J=3.7 \mathrm{~Hz}, \mathrm{C}^{\text {Ar }}$), 125.43 ($\mathrm{C}^{\text {Ar }}$), 125.01 ($\mathrm{C}^{\text {Ar })}$, $122.57\left(\mathrm{C}^{\text {Ar }}\right)$, $122.46\left(\mathrm{C}^{\text {Ar }}\right), 120.30\left(\mathrm{C}^{\text {Ar }}\right)$, $120.29\left(\mathrm{C}^{\text {Ar }}\right)$, $118.97\left(\mathrm{C}^{\text {Ar }}\right), 118.50\left(\mathrm{C}^{\text {Ar }}\right)$, 111.64 ($\mathrm{C}^{\text {Ar }}$), $69.22\left(\mathrm{CH}_{2}-\mathrm{O}\right), 62.36$ (d, $\left.J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right), 61.80\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.70$ ($\mathrm{C}^{2}, \mathrm{C}^{6} \mathrm{pip}$), $36.14\left(\mathrm{CH}_{2}\right), 35.41\left(\mathrm{C}^{4} \mathrm{pip}\right), 32.23\left(\mathrm{~d}, J=137.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 30.12\left(\mathrm{C}^{3}\right.$, $\left.\mathrm{C}^{5} \mathrm{pip}\right), 15.25\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 27.27$. ${ }^{19} \mathrm{~F}$ NMR (376 MHz, MeOD) $\delta \quad-59.39$. HRMS-ESI $(\mathrm{m} / \mathrm{z}) \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ 722.2971, found 722.2964.

4.2 Assays for anti-EBOV activity and cytotoxicity

All work with infectious virus was conducted in a BSL-4 laboratory at the Centers for Disease Control and Prevention. All laboratorians adhered to international practices appropriate for this biosafety level. Anti-EBOV activities were determined in Huh7 cells (Apath LLC), using recombinant virus expressing the fluorescent reporter protein ZsGreen (EBOV-ZsG), as described previously [49,50]. Briefly, 3000 Huh7 cells were seeded in each well of a 384-well plate. The following day, the cells were
treated with varying concentrations of compound for 2 h , before infection with EBOVZsG virus at a multiplicity of infection of 0.3 . The ZsGreen fluorescence was determined 3 days post-infection using a Synergy H1MD plate reader (BioTek). Cytotoxicity was determined on cells that received compound, but no virus, using CellTiter-Glo (Promega) according to the manufacturer's instructions. The 50% effective (EC_{50}) and 50% cytotoxic concentrations (CC_{50}) were determined using GraphPad Prism 7.0 (GraphPad Software) to fit a 4-parameter equation to semi-log plots of the concentration-response data. The Selectivity Index (SI) was calculated as the $\mathrm{CC}_{50} / \mathrm{EC}_{50}$.

Assays to test the inhibition of EBOV-GP-mediated entry were performed with pseudotyped HIV particles as described [49]. Briefly, particles were generated by cotransfection of Lenti-X 293T cells with plasmids expressing EBOV-GP and a HIV luciferase reporter vector. Huh7 cells in 384-well plates were treated with varying concentrations of compound for 1 h at $37^{\circ} \mathrm{C}$, then the pseudotyped particles were added. Three days later, firefly luciferase activity was determined using the BrightGlo luciferase assay system (Promega).

For filipin staining, HeLa cells were treated with the indicated concentrations of compounds, or the vehicle control at a final concentration of $0.1 \%(\mathrm{v} / \mathrm{v})$. Test compounds were dissolved in DMSO, the positive control compound U18666A (Sigma-Aldrich) was dissolved in water. Twenty-four hours later, the cells were washed with Phosphate Buffered Saline (PBS) three times, then fixed with 3\% paraformaldehyde for 1 h at room temperature. The cells were again washed three times with PBS, then incubated with $1.5 \mathrm{mg} / \mathrm{mL}$ of glycine for 10 min at room
temperature. The cells were then stained with filipin (Sigma-Aldrich) at $0.5 \mathrm{mg} / \mathrm{mL}$ in PBS supplemented with $10 \%(\mathrm{v} / \mathrm{v})$ fetal calf serum for 2 h at room temperature. The cells were washed another three times with PBS, then visualized on an Operetta High-Content Imaging System (Perkin-Elmer), using the DAPI filter set with a 20x objective.

Author information

Corresponding Author

*Luigi A. Agrofoglio: Phone: +33-2-3849-4582. Fax: +33-2-3847-1281. E-mail: luigi.agrofoglio@univ-orleans.fr
*Vincent Roy: Phone: +33-2-3849-4572. Fax: +33-2-3847-1281. E-mail:
vincent.roy@univ-orleans.fr

Author Contributions

LAA and VR initiated and headed the study. MB, EB synthesized all compounds. PC, MF and CFS generated the EBOV inhibition data. DW and AB generated the chemoinformatics data. PSR generated the filipin-staining data. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Acknowledgments

This work was supported by the University of Orleans and the CNRS; the research program fullfills the LabEx SYNORG (11-LABX-0029) objectives. Chemoinformatics
was supported by the National Science Centre (Poland) Grant PRELUDIUM 2016/21/N/ NZ25/01725. MB thanks the UO and MESRI for PhD fellowship; EP thanks DGA and Region Centre Val de Loire for PhD fellowship. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Abbreviations used

BOC Butyloxycarbonyl
Bs Broad signal
DCM Dichloromethane
DHP 3,4-Dihydropyran
DIPEA N, N-Diisoproylethylamine
DMA Dimethylacetamide
DMF N, N-Dimethylformamide
DMSO Dimethylsulfoxyde
EBOV Ebola virus
FDA US food and drug administration
HF Hemorrhagic fever
GP Glycoprotein
MW Microwaves
NPC1 Niemann Pick C1 protein
PPTS Pyridinium p-toluenesulfonate
RNA Ribonucleic acid
r.t. room temperature

SN Nucleophilic substitution

TFA Trifluoroacetic acid
THF Tetrahydrofuran
TLC thin layer chromatography

References

[1] J.H. Kuhn, Y. Bao, S. Bavari, S. Becker, S. Bradfute, J. R. Brister, A.A. Bukreyev, K. Chandran et al., Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae, Arch. Virol. 158 (2013) 301-311. DOI: 10.1007/s00705-012-1454-0
[2] www.ictv.global/report/filoviridae
[3] G. Grard, R. Biek, J.-J. Muyembe Tamfum, J. Fair, N. Wolfe, P. Formenty, J. Paweska, E. Leroy, Emergence of divergent Zaire ebola virus strains in Democratic Republic of the Congo in 2007 and 2008, J. Infect. Dis. 204 (2011) S776-S784. DOI: 10.1093/infdis/jir364
[4] in "Medical Microbiology. 4th edition", Ed S. Baron, The University of Texas Medical Branch at Galveston (1997).
[5] P. Aleksandrowicz, A. Marzi, N. Biedenkopf, N. Beimforde, S. Becker, T. Hoenen, H. Feldmann, H.-J. Schnittler, Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis, J. Infect. Dis. 204 (2011) S957-S967. DOI: https://doi.org/10.1093/infdis/jir326
[6] H. Hofmann-Winkler, F. Kaup, S. Pöhlmann, Host cell factors in filovirus entry: novel players, new insights. Viruses 4 (2012) 3336-3362. doi: 10.3390/v4123336
[7] A. Takada, Filovirus tropism: cellular molecules for viral entry, Front Microbiol. 3 (2012) 34. DOI: 10.3389/fmicb.2012.00034
[8] E.H. Miller, K. Chandran, Filovirus entry into cells - new insights, Curr. Opin. Virol. 2 (2012) 206-214. DOI: 10.1016/j.coviro.2012.02.015
[9] C.L. Hunt, N.J. Lennemann, W. Maury, Filovirus entry: A novelty in the viral fusion world, Viruses 4 (2012) 258-275. DOI: 10.3390/v4020258
[10] S. Bhattacharyya, T.J. Hope, Cellular factors implicated in filovirus entry, Adv. Virol. 2013 (2013) 487585. doi: 10.1155/2013/487585
[11] A. Takada, K. Fujioka, M. Tsuiji, A. Morikawa, N. Higashi, H. Ebihara, D. Kobasa, H. Feldmann, T. Irimura, Y. Kawaoka, Human macrophage C-type lectin specific for galactose and N -acetylgalactosamine promotes filovirus entry, J. Virol. 78 (2004) 2943-2947. doi: 10.1128/jvi.78.6.2943-2947.2004
[12] T. Gramberg, H. Hofma,,; P. Möller, P.F. Lalor, A. Marzi, M. Geier, M. Krumbiegel, T. Winkler, F. Kirchhoff, D.H. Adams, S. Becker, J. Münch, S. Pöhlmann, LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus, Virology 340 DOI: 10.1016/j.virol.2005.06.026
[13] A. Marzi, T. Gramberg, G. Simmons, P. Möller, A.J. Rennekamp, M. Krumbiegel, M. Geier, J. Eisemann, et al., DC-SIGN and DC-SIGNR interact with the glycoprotein of marburg virus and the S protein of severe acute respiratory syndrome coronavirus, J. Virol. 78 (2004) 12090-12095. DOI: 10.1128/JVI.78.21.12090-12095.2004
[14] A.S. Kondratowicz, N.J. Lennemann, P.L. Sinn, R.A. Davey, C.L. Hunt, S. Moller-Tank, D.K. Meverholz, P. Rennert, et al., T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 8426-8431. DOI: 10.1073/pnas. 1019030108
[15] M. Shimojima, A. Takada, H. Ebihara, G. Neumann, K. Fujioka, T. Irimura, S. Jones, H. Feldmann, Y. Kawaoka, Tyro3 family-mediated cell entry of Ebola and Marburg viruses, J. Virol. 80 (2006) 10109-10116. DOI: 10.1128/JVI.0115706
[16] A. Takada, S. Watanabe, H. Ito, K. Okazaki, H. Kida, Y. Kawaoka, Downregulation of $\beta 1$ integrins by Ebola virus glycoprotein: implication for virus entry, Virology 278 (2000) 20-26. DOI: 10.1006/viro.2000.0601
[17] K. Chandran, N.J. Sullivan, U. Felbor, S.P. Whelan, J.M. Cunningham, Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection, Science 308 (2005) 1643-1645. DOI: 10.1126/science. 1110656
[18] www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-ebola-virus
[19] M.R. Edwards, C.F. Basler, Current status of small molecule drug development for Ebola virus and other filoviruses, Curr. Opin. Virol. 35 (2019) 42-56. DOI: 10.1016/j.coviro.2019.03.001
[20] E. Picazo, F. Giordanetto, Small molecules inhibitors of Ebola virus infection, Drug Discov. Today 20 (2015) 277-286. DOI: 10.1016/j.drudis.2014.12.010.
[21] M. Côté, J. Misasi, T. Ren, A. Bruchez, K. Lee, C.M. Filone, L. Hensley, Q. Li, D. Ory, K. Chandran, J. Cunningham, Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection, Nature 477 (2011) 344348. DOI: 10.1038/nature10380
[22] J.E. Carette, M. Raaben, A.C. Wong, A.S. Herbert, G. Obernosterer, N. Mulherkar, A.I. Kuehne, P.J. Kranzusch, et al., Ebola virus entry requires the cholesterol transporter Niemann-Pick C1, Nature 477 (2011) 340-343. DOI: 10.1038/nature10348
[23] C.J. Shoemaker, K.L. Schornberg, S.E. Delos, C. Scully, H. Pajouhesh, G.G. Olinger, L.M. Johansen, J.M. White, Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection, PLoS One 8 (2013) e56265. DOI: 10.1371/journal.pone. 0056265
[24] I.N. Gaisina, N.P. Peet, L. Wong, A.M. Schafer, H. Cheng, M. Anantpadma, R.A. Davey, G.R.J. Thatcher, L. Rong, Discovery and structural optimization of 4-(aminomethyl)benzamides as potent entry inhibitors of Ebola and Marburg virus infections, J. Med. Chem. 63 (2020) 7211-7225. DOI: 10.1021/acs.jmedchem.0c00463.
[25] L.M. Johansen, J.M. Brannan, S.E. Delos, C.J. Shoemaker, A. Stossel, C. Lear, B.G. Hoffstrom, L.E. Dewald, K.L. Schornberg, C. Scully, J. Lehar, L.E. Hensley, J.M. White, G.G. Olinger, FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection, Sci. Transl. Med. 5 (2013) 190ra79. DOI: 10.1126/scitransImed. 3005471
[26] L.M. Johansen, L.E. DeWald, C.J. Shoemaker, B.G. Hoffstrom, C.M. LearRooney, A. Stossel, E. Nelson, S. Delos, J.A. Simmons, J.M. Grenier, L.T. Pierce, H. Pajouhesh, J. Lehar, L.E. Hensley, P.J. Glass, J.M. White, G.G. Olinger, A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity, Sci. Transl. Med. 7 (2015) $290 r a 89$. DOI: 10.1126/scitransImed.aaa5597.
[27] P.B. Madrid, S. Chopra, I.D. Manger, L. Gilfilan, T.R. Keepers, A.C. Shurtleff, C.E. Green, L.V. Lyer, H.H. Dilks, R.A. Davey, A.A. Kolokoltsov, R. Carrion Jr, J.L. Patterson, S. Bavari, R.G. Panchal, T.K. Warren, J.B. Wells, W.H. Moos, R.L. Burket, M.J. Tanga, A systematic screen of FDA-approved drugs for
inhibitors of biological threat agents, PLoS One 8 (2013) e60579. DOI: 10.1371/journal.pone. 0060579 .
[28] Y. Zhao, J. Ren, K. Harlos, D.M. Jones, A. Zeltina, T.A. Bowden, S. PadillaParra, E.E. Fry, D.I. Stuart, Toremifene interacts with and destabilizes the Ebola virus glycoprotein Nature 535 (2016) 169-172. DOI: 10.1038/nature18615
[29] J.M. Fels, J.S. Spence, R.H. Bortz, Z.A. Bornholdt, K. Chandran, A hyperstabilizing mutation in the base of the Ebola virus glycoprotein acts at multiple steps to abrogate viral entry, mBio. 10 (2019) e01408-19. DOI : 10.1128/mBio.01408-19.
[30] R.H. Bortz, A.C. Wong, M.G. Grodus, H.S. Recht, M.C. Pulanco, G. Lasso, S.J. Anthony, E. Mittler, R.K. Jangra, K. Chandran, A virion-based assay for glycoprotein thermostability reveals key determinants of filovirus entry and its inhibition, J. Virol. 94 (2020) e00336-20. DOI: 10.1128/JVI.00336-20.
[31] Z. Ates-Alagoz, Antimicrobial activities of 1H-benzimidazole-based molecules, Curr. Top. Med. Chem. 16 (2016) 2953-2962. DOI: 10.2174/1568026616666160506130226
[32] T. Besset, P. Jubault, X. Pannecoucke, T. Poisson, New entries toward the synthesis of OCF_{3}-containing molecules, Org. Chem. Front. 3 (2016) 10041010. DOI: 10.1039/c6qo00164e
[33] X. Li, F. Lu, M.N. Trinh, P. Schmiege, J. Seemann, J. Wang, G. Blobel, 3.3 Å Structure of Niemann-Pick C1 protein reveals insights into the function of the Cterminal luminal domain in cholesterol transport, Proc. Natl. Acad. Sci. U.S.A. 114 (2017) 9116-9121. DOI: 10.1073/pnas. 1711716114
[34] G.M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening
enrichments, J. Comput. Aided Mol. Des. 27 (2013) 221-234. DOI: 10.1007/s10822-013-9644-8
[35] R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J. Med. Chem. 49 (2006) 6177-6196. DOI: 10.1021/jm051256o
[36] A. Gaulton, A. Hersey, M. Nowotka, A.P. Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkinson, L.J. Bellis, et al., The ChEMBL database in 2017, Nucleic Acids Res. 45 (2017) D945-D954. DOI: 10.1093/nar/gkw1074
[37] J. Besnard, G.F. Ruda, V. Setola, K. Abecassis, R.M. Rodriguiz, X.P. Huang, S. Norval, M.F. Sassano, et al., Automated design of ligands to polypharmacological profiles, Nature 492 (2012) 215-220. DOI: 10.1038/nature11691
[38] Canvas, Schrödinger, LLC, New York, NY, 2017.
[39] W. Sherman, T. Day, M.P. Jacobson, R.A. Friesner, R. Farid, Novel procedure for modeling ligand/receptor induced fit effects, J. Med. Chem. 49 (2006) 534553. DOI: 10.1021/jm050540c
[40] M.M. Mysinger, M. Carchia, J.J. Irwin, B.K. Shoichet, Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking, J. Med. Chem. 55 (2012) 6582-6594. DOI: 10.1021/jm300687e
[41] M.L. Wang, M. Motamed, R.E. Infante, L. Abi-Mosleh, H.J. Kwon, M.S. Brown, J.L. Goldstein, Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes, Cell Metab. 12 (2010) 166-173. DOI: 10.1016/j.cmet.2010.05.016
[42] X. Li, P. Saha, J. Li, G. Blobel, S.R. Pfeffer, Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 10079-10084. DOI: 10.1073/pnas. 1611956113
[43] H. Wang, Y. Shi, J. Song, J. Qi, G. Lu, J. Yan, G.F. Gao, Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1, Cell 164 (2016) 258-268. DOI: 10.1016/j.cell.2015.12.044
[44] F. Moradgholi, H. Vahedi, J. Lari, Highly efficient synthesis of tetra benzo spiro bis-crown ether, Lett. Org. Chem. 12 (2015) 85-90. DOI: 10.2174/1570178612666150108001219
[45] G. Hirst, D. Calderwood, R. Munschauer, L. Arnold, D.A. Johnston, P. Rafferty, Pyrrolopyrimidines as therapeutic agents, US20030153752 (2003).
[46] J. Zhang, Y. Zhang, W. Zhang, B. Liu, J. Zhang, J. Liu, L. Zhang, Aminoquinazoline derivatives and their salts and methods of use, EP2780342B1, 2014.
[47] S. Baruah, P. Pratim Kaishap, S. Gogoi, Ru(II)-catalyzed C-H activation and annulation of salicylaldehydes with monosubstituted and disubstituted alkynes, Chem. Comm. 52 (2016) 13004-13007. DOI: 10.1039/c6cc07204f
[48] E. Salanouve, G. Bouzemame, S. Blanchard, E. Derat, M. Desage-El Murr, L. Fensterbank, Tandem C-H activation/arylation catalyzed by low-valent iron complexes with bisiminopyridine ligands, Chem. Eur. J. 20 (2014) 4754-4761. DOI: 10.1002/chem. 201304459
[49] M. Flint, P. Chatterjee, D.L. Lin, L.K. McMullan, P. Shrivastava-Ranjan, E. Bergeron, M.K. Lo, S.R. Welch, S.T. Nichol, A.W. Tai, C.F. Spiropoulou, A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate
transferase as potential antiviral target for Ebola virus, Nat. Commun. 10 (2019) 285. DOI: 10.1038/s41467-018-08135-4
[50] S.R. Welch, L. Wiggleton Guerrero, A.K. Chakrabarti, L.K. McMullan, M. Flint, G.R. Bluemling, G.R. Painter, S.T. Nichol, C.F. Spiropoulou, C.G. Albarino, Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems, Antiviral Res. 135 (2016) 9-18. DOI: 10.1016/j.antiviral.2016.10.007

Graphical Abstract

Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-

