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Abstract: In the present study, new 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazines bearing
sulfonamides were synthesized, characterized and evaluated for their anticancer activities. The
structures of these derivatives were elucidated by 1H NMR, 13C NMR, infrared and high-resolution
mass spectrometry for further validation of the target compound structures. The anticancer activities
of the new molecules were evaluated against five human cancer cell lines, including A-549, Hs-683,
MCF-7, SK-MEL-28 and B16-F10 cell lines using 5-fluorouracil and etoposide as the reference drugs.
Among the tested compounds, 4e and 4f exhibited excellent activities in the same range of the positive
controls, 5-fluorouracil and etoposide, against MCF-7 and SK-MEL-28 cancer cell lines, with IC50

values ranging from 1 to 10 µM. The molecular docking studies of 4e and 4f showed a strong binding
with some kinases, which are linked to MCF-7 and SK-MEL-28 cancer cell lines.

Keywords: 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine; anticancer activity; sulfonamides;
human cancer cell lines

1. Introduction

Cancer is a complex disease characterized by uncontrolled division and proliferation
by blocking the process of normal cell division [1]. It is considered as one of the most
serious illnesses that threatens our lives. Moreover, cancer mortality continues to increase
and it is expected to surpass cardiovascular mortality in the near future [2]. According
to a recent World Health Organization (WHO) global cancer report in 2020, 19.3 million
new cases and 10 million deaths have been determined. By 2040, it is projected to have
nearly 30.2 million new cancer cases and 16.3 million cancer deaths per year [3]. Therefore,
medicinal chemists need to continue designing and developing new anticancer agents with
high specificity in order to combat this disease.

Heterocycles are an important class of chemical compounds present in a wide vari-
ety of drugs, vitamins, natural products and biomolecules, as well as biologically active
molecules [4–7]. Accordingly, our group has for many years been developing new methods
towards the synthesis and functionalization of various heterocyclic systems [8–13].

The heterocyclic systems bearing sulfonamide groups have had an important place
in medicinal chemistry since Gerhard Domagk discovered their antibacterial activity in
1935 [14]. This discovery has led to breakthroughs in various therapies applied to a variety
of diseases [15–23]. Notably, some sulfonamide derivatives have been approved by FDA
for the treatment of cancer disease [24–27]. In addition, the hybrid approach has shown to
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be an important synthetic tool for the preparation of new bioactive molecules from various
heterocycles [28].

Protein kinases are a large family of enzymes (518 in human genome) having a crucial
rule of catalyzing protein phosphorylation, which is an important mechanism of cells
function, such as proliferation, cell cycle, apoptosis, motility, growth and differentiation.
Thus, deregulated kinase functions is often linked to cancer spread and development [29].

The computational docking has been used as a powerful strategy for understanding
and predicting the molecular interaction of ligands with various biological receptors, such
as protein active sites. This interesting protein–ligand interaction can guide the design of
molecules and experiments, providing a large set of candidates in medicinal applications.

In continuation of our research interest in the design and discovery of new anticancer
agents [30–34], we aim to report herein the design, synthesis, characterization and anti-
cancer activities of new 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine derivatives
bearing sulfonamides as antiproliferative molecules against five human cancer cell lines,
namely A-549 lung cancer, Hs-683 glioma, MCF-7 breast cancer, SKMEL-28 and B16-F10
melanoma cell lines. In order to predict the mechanism of action of the most active com-
pounds, molecular docking studies were also carried out.

2. Results
2.1. Chemistry

As shown in Scheme 1, the 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine 3
was synthesized in two steps, starting with a condensation reaction between 3-amino-
6-chloropyridazine 1 and 2-bromoacetophenone according to the reported method [35]
to obtain 6-chloro-2-phenylimidazo [1,2-b]pyridazine 2 in a very good yield (89%) [36].
Compound 2 was then involved in a reduction reaction using eight equivalents of sodium
borohydride in ethanol at 50 ◦C to give product 3 in excellent yield (93%).
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Scheme 1. Synthesis of 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine 3.

To perform the -NH functionalization of the 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-
b]pyridazine 3 by sulfonyl moieties, we first studied the sulfonylation reaction in the
presence of different bases in order to increase its yield using the model reaction between
tosyl chloride and 3 (Table 1). First, we have used two equivalents of tosyl chloride and
two equivalents of triethylamine (Et3N) in CH2Cl2. The reaction was stopped after 48 h
but the conversion was not complete in leading us to the desired product 4a in acceptable
yield (68%) (entry 1, Table 1). In a second entry, we have used N,N-diisopropylethylamine
(DIPEA) as a base but we have observed a noticeable drop in the reaction yield to 50%
(entry 2, Table 1). We have noticed that the nature of the base plays an important role in this
reaction. Surprisingly, when a weak base, such as pyridine, was used, the full conversion
was observed after only 1 h with a highly improved yield of 87% (entry 3, Table 1). In the
last entry, the decrease in the amount of the tosyl chloride to 1.1 equivalents, respecting the
same conditions of entry 3, gave the desired product 4a with a good yield of 86% (entry 4,
Table 1).
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Table 1. Optimization of the conditions of the sulfonylation reaction.
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Scheme 2. Synthesis and chemical structures of compounds 4a–g. 

2.2. Antitumor Activity 

Entry Tosyl Chloride
(Equiv.)

Base
(2 Equiv.) Time (h) Yield%

1 2 Et3N 48 68
2 2 DIPEA 48 55
3 2 Pyridine 1 87
4 1.1 Pyridine 1 86

Thanks to the optimized reaction conditions, we have synthesized a small chemical
library of new 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine derivatives containing
sulfonamides, which was tested on different cancer cell lines. The developed reaction
conditions have showed a good compatibility with different aryl sulfonyls bearing various
electron-donating or electron-withdrawing groups, such as Cl, OMe, CF3, and NO2. The
desired products 4a–d and 4f were obtained with good yields, ranging between 70–86%. In
contrast, we have noticed a small decrease in the reaction yields for compounds 4e and 4g,
which can be explained by the steric hindrance (Scheme 2). All the synthesized compounds
were purified by column chromatography and characterized by 1H and 13C NMR (see
Supplementary Materials), infrared and high-resolution mass spectrometry and were in
full accordance with their depicted structures.
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2.2. Antitumor Activity

The synthesized compounds 4a–g were tested against five human cancer cell lines,
namely A549 (lung carcinoma), HS-683 (glioma cancer), MCF-7 (breast carcinoma), and
SK-MEL-28 and B16-F1 (melanoma cancer), using MTT (thiazolyl blue tetrazolium bromide,
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Sigma-Aldrich) assay. The reference drugs were selected to be 5-Fluorouracil (5-FU) and
etoposide. The results listed in Table 2 (IC50 value, defined as the concentration, inducing a
50% decrease in cell growth after 3 days of incubation), show that the compounds 4e and 4f
display high inhibitory activities, similar to those obtained with the positive controls 5-FU
and etoposide, against cancer cell lines MCF-7 and SK-MEL-28 with IC50 values between 9
and 7.8 µM, respectively. Moreover, a moderate activity was obtained for compound 4f
against cancer cell lines SK- B16-F1 with IC50 value of 10.8 µM. Compounds 4a, 4c, 4d and
4g demonstrated low activity against cancer cell lines A549, Hs-683, MCF-7 and B16-F1
with IC50 values between 10 and 100 µM. Unfortunately, compound 4b has no activity
against the cell line panels tested (IC50 > 100 µM).

Table 2. The cytotoxic activities of the synthesized compounds and standard anticancer agents
expressed in terms of IC50 (µM).

Compounds
Human Cancer Cell Lines IC50 (µM) a

A549 b HS-683 c MCF-7 d SK-MEL-28 e B16-F1 f c Log P g

4a 10–100 >100 >100 >100 10–100 3.7
4b >100 >100 >100 >100 >100 3.1
4c 10–100 >100 10–100 >100 >100 2.9
4d >100 10–100 10–100 >100 10–100 3.0
4e >100 >100 9.4 >100 >100 4.0
4f >100 67.9 96.5 7.8 10.8 4.1
4g >100 >100 >100 10–50 >100 4.4

5-FU 1.2 4.3 2.3 3.3 0.3
Etoposide 0.9 0.8 3.3 1.1 1.3

a IC50 values (µM): Drug concentration responsible for the inhibition of 50% of the growth of the specified cell line
after 72 h. b Human lung cancer cell line. c Human glioma cancer cell line. d Human breast cancer cell line. e Human
melanoma cancer cell line. f Mouse melanoma cancer cell line. g Partition coefficient, a measure of lipophilicity.

Structure–activity relationship studies of the prepared compounds 4a–g toward cancer
cell lines have shown that the anticancer activity in compound 4e against the MCF-7 cell
line, increased when electron-donating groups, OMe and Cl, are present at ortho and
meta positions of the phenyl moiety, respectively. In addition, the presence of an electron
withdrawing groups CF3 attached to the benzene ring at the para position, increased the
anticancer activity of compound 4f against SK-MEL-28 cell line. However, the results
have revealed that the presence of OMe (an electron-donating group) at the para position
of the phenyl moiety did not show any inhibitory activity on the cancer cell lines at
low concentration. Meanwhile, the membrane–water partition coefficient (cLog P) was
calculated using ChemBioDraw Ultra v.12. The compounds 4a–g have shown clog P
between 2.9 and 4.4. These values correlate with those needed to develop drug-like
compounds −2 < LogP ≤ 5 according to Lipinski’s rule [37].

2.3. Molecular Docking Studies

To better elucidate the inhibitory properties of our best compounds (4e and 4f) we have
performed a screening of potential kinases implicated in tumorigenesis, based on the 2020
FDA-approved small molecule protein kinase inhibitors (targeting primarily 35 kinases).
This screening is performed by a molecular docking approach (see experimental part).

Molecular docking results have shown a strong binding of 4e ligand with the following
kinases (CSF1R, ErbB2, BRAF and MEK2). It has been reported that high expression of
CSF1R is related to breast cancer progression and that high rates of ErbB2 is linked to lower
overall survival rates [38,39]. Indeed, the 4e molecule’s affinity towards the ErbB2 is about
(−8.0 Kcal/mol) with 11 non-bond links. Additionally, 4e was linked to CSF1R with an
affinity of (−9.0 Kcal/mol) with 12 non-bond links. Moreover, it has been shown that
the expression of BRAF/MEK pathway activity was linked to estrogen-dependent breast
cancer [40]. MEK2 and BRAF scored an affinity of −9.1 and −7.9 Kcal/mol, respectively,
with 13 non-bond links each (Table 3).
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Table 3. Illustrations in 3D and 2D of the best interactions for 4e (A) and 4f (B) and aminos acids
within the active site of different kinases.
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As for the ligand 4f, the docking data have revealed a high affinity with five kinases 
(BRAF, CDK4, KIT, MEK2 and PDGFRA). The PDGFRA kinase had the best result with 
an affinity of −10.5 Kcal/mol, as well as the establishment of 24 non-bond links (2 of them 
are pi-sulfur bonding type, 15 hydrophobic, 4 hydrogens and 1 halogen bond). The devel-
opment of certain malignant diseases is associated with the overactivity of PDGF signal-
ing, as well as non-malignant diseases characterized by excessive cell proliferation [41]. 

BRAF, MEK2, KIT and CDK4 scored an affinity of −9.4, −9.1, −9.1, −9.6 and a total 
non-bond of 17, 19, 19 and 17, respectively. Previous studies have shown a direct link 
between skin cancer and mutated BRAF kinase accounting for 50% of total melanomas 
[42], decreasing its expression could benefit in controlling the cancer. Although MEK2 and 
BRAF kinase are part of the same MAPK signaling pathway, MEK2, however, has not yet 
been shown to possess any effect on the melanoma pathogenesis [43]. KIT plays an im-
portant role in the activation of many signaling pathways, including the MAPK pathway. 
Consequently, it contributes in what is known as KIT-derived melanoma [44]. CDK4 ap-
pears in 90% of melanoma cases; furthermore, MAPK signaling pathway upregulates D1 
cycling expression, resulting in CDK4 pathway enhancement [45]. These results have 
shown that the 4f molecule can be considered as potential skin cancer treatment.  

3. Materials and Methods 
3.1. General Procedures 

All chemicals, starting materials and solvents used in this study were bought from 
Fluorochem, Sigma-Aldrich or Alfa Aesar and used without further purification. All re-
actions were carried out under regular conditions. All solvents were obtained from com-
mercial sources and were used as received. The evolution of the reactions was monitored 
by thin layer chromatography (TLC) on aluminum sheets covered with Merck 60 F254 
silica gel (thickness 0.2 mm), and the revelation was carried out under ultraviolet lamp 
regulated at 254 nm. Column chromatography was performed on silica gel Merck 60 μm 
(215–400 mesh). Melting points (mp [°C]) were carried out by open capillary tubes and 
are uncorrected using Thermo scientific digital melting point IA9200. The NMR spectra 
were recorded on a Bruker AC 300 or 400 MHz instruments at room temperature, using 
TMS as the internal standard and chloroform-d as a solvent. Chemical shifts (δ) are meas-
ured in parts per million (ppm). Infrared spectra were recorded on a Thermo Scientific, 
Nicolet IS50 FT-IR. High-resolution mass spectra (HRMS) was performed on a Maxis 
Bruker 4G. 
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As for the ligand 4f, the docking data have revealed a high affinity with five kinases
(BRAF, CDK4, KIT, MEK2 and PDGFRA). The PDGFRA kinase had the best result with an
affinity of −10.5 Kcal/mol, as well as the establishment of 24 non-bond links (2 of them are
pi-sulfur bonding type, 15 hydrophobic, 4 hydrogens and 1 halogen bond). The develop-
ment of certain malignant diseases is associated with the overactivity of PDGF signaling,
as well as non-malignant diseases characterized by excessive cell proliferation [41].

BRAF, MEK2, KIT and CDK4 scored an affinity of −9.4, −9.1, −9.1, −9.6 and a total
non-bond of 17, 19, 19 and 17, respectively. Previous studies have shown a direct link
between skin cancer and mutated BRAF kinase accounting for 50% of total melanomas [42],
decreasing its expression could benefit in controlling the cancer. Although MEK2 and
BRAF kinase are part of the same MAPK signaling pathway, MEK2, however, has not
yet been shown to possess any effect on the melanoma pathogenesis [43]. KIT plays an
important role in the activation of many signaling pathways, including the MAPK pathway.
Consequently, it contributes in what is known as KIT-derived melanoma [44]. CDK4
appears in 90% of melanoma cases; furthermore, MAPK signaling pathway upregulates
D1 cycling expression, resulting in CDK4 pathway enhancement [45]. These results have
shown that the 4f molecule can be considered as potential skin cancer treatment.

3. Materials and Methods
3.1. General Procedures

All chemicals, starting materials and solvents used in this study were bought from Flu-
orochem, Sigma-Aldrich or Alfa Aesar and used without further purification. All reactions
were carried out under regular conditions. All solvents were obtained from commercial
sources and were used as received. The evolution of the reactions was monitored by thin
layer chromatography (TLC) on aluminum sheets covered with Merck 60 F254 silica gel
(thickness 0.2 mm), and the revelation was carried out under ultraviolet lamp regulated at
254 nm. Column chromatography was performed on silica gel Merck 60 µm (215–400 mesh).
Melting points (mp [◦C]) were carried out by open capillary tubes and are uncorrected
using Thermo scientific digital melting point IA9200. The NMR spectra were recorded on a
Bruker AC 300 or 400 MHz instruments at room temperature, using TMS as the internal
standard and chloroform-d as a solvent. Chemical shifts (δ) are measured in parts per
million (ppm). Infrared spectra were recorded on a Thermo Scientific, Nicolet IS50 FT-IR.
High-resolution mass spectra (HRMS) was performed on a Maxis Bruker 4G.

3.2. Synthesis and Characterization

6-Chloro-2-phenylimidazo [1,2-b]pyridazine (2). The 6-chloro-2-phenylimidazo [1,2-b]
pyridazine (2) was prepared as described in the literature [35,36]. 1H NMR (300 MHz,
CDCl3): δ = 8.19 (s, 1H), 7.95–7.91 (m, 2H), 7.87 (d, J = 9.0 Hz, 1H), 7.47–7.35 (m, 3H), 7.02
(d, J = 9.0 Hz, 1H). 13C NMR (75 MHz, CDCl3): δ = 146.8, 133.1, 132.9, 129.9 (2*CH), 128.8,
126.4, 126.1 (2*CH), 123.0, 119.0, 113.2. IR: ν (cm−1) = 3065 (C–H), 1673 (C=C), 1516 (C=N),
1446 (C=N), 1100 (C–N) 826, 801(C–C), 685 (C–Cl).

2-Phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine (3). To a solution of compound (2)
(1.00 g, 4.36 mmol) in ethanol (20 mL), sodium borohydride (0.99 g, 26.19 mmol) was added
and the mixture was stirred at 50 ◦C for 48 h. The reaction was quenched with drops of
water, then the solvent was removed under reduced pressure. The residue was dissolved
in CH2Cl2 (20 mL), washed three times with water and the organic phase was separated,
dried over magnesium sulfate and evaporated to dryness to afford compound (3) as a white
solid (yield 93%). Mp: 118–119 ◦C. 1H NMR (300 MHz, CDCl3): δ 7.70 (dd, J = 6.0 Hz,
3.0 Hz, 2H), 7.35 (dd, J = 9.0 Hz, 6.0 Hz, 2H), 7.21 (dd, J = 6.0 Hz, 9.0 Hz, 2H), 7.08 (s, 1H),
3.24–3.20 (m, 2H), 2.96–2.88 (m, 2H), 1.94–1.86 (m, 2H). 13C NMR (75 MHz, CDCl3): δ 139.9,
137.3, 134.4, 128.6 (2*CH), 126.6, 124.5 (2*CH), 113.1, 45.0, 22.3, 22.2. IR: ν (cm−1) = 3165
(N–H), 2954(C–H), 1600 (C=C), 1443 (C=N), 1070 (C–N), 755 (C–C). HRMS (ESI): m/z calcd
for C12H14N3 [M + H]+ 200.1182; found: 200.1182.

General procedure for the synthesis of compounds (4a–g).
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Compound (3) (0.20 g, 0.50 mmol) was dissolved in CH2Cl2 (6 mL), then pyridine
(0.08 g, 1.00 mmol) was added. After 5 min of stirring, sulfonyl chloride (0.55 mmol) was
added and the reaction mixture was stirred at room temperature for 1 h. After evaporation,
the medium was extracted with CH2Cl2, and the organic phase was washed with water
(3 × 10 mL), dried over anhydrous MgSO4 and then concentrated under reduced pressure.
The obtained products were purified by silica gel chromatography to give 4a–g as a solid.

5-((4-Methyphenyl)sulfonyl)-2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine (4a).
Compound (4a) was prepared according to the general procedure; the desired product was
obtained after chromatography on silica gel (eluent: DCM/EtOAc 7/3) as a pale yellow
solid (86%). Mp: 143–144 ◦C. 1H NMR (300 MHz, CDCl3): δ 7.78 (dt, J = 8.2, 1.7 Hz, 2H),
7.55 (s, 1H), 7.48–7.36 (m, 4H), 7.33–7.27 (m, 3H), 3.99–3.92 (m, 2H), 2.65 (t, J = 7.2 Hz, 2H),
2.43 (s, 3H), 1.60 (qd, J = 7.2, 4.4 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ 146.1, 140.6, 137.3,
132.5, 130.4 (2*CH), 128.7 (2*CH), 128.1 (2*CH), 127.5, 125.2, 124.9 (2*CH), 114.7, 47.5, 21.7,
20.6, 16.8. IR: ν (cm−1) = 2358 (C–H), 1362 (S=O asymmetrical), 1166 (S=O symmetrical),
1067 (C–N), 998 (C–C). HRMS (ESI): m/z calcd for C19H20N3O2S [M + H]+ 354.1272; found:
354.1270.

5-((4-Methoxyphenyl)sulfonyl)-2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine (4b).
Compound (4b) was prepared according to the general procedure; the desired product
was obtained after chromatography on silica gel (eluent: DCM/EtOAc 6/4) as a brown
solid (80%). Mp: 142–143 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.80–7.72 (m, 2H), 7.53 (s, 1H),
7.50–7.44 (m, 2H), 7.39 (ddd, J = 9.3, 5.9, 1.7 Hz, 2H), 7.37–7.27 (m, 1H), 6.95–6.91 (m, 2H),
3.97–3.91 (m, 2H), 3.85 (s, 3H), 2.61 (t, J = 7.2 Hz, 2H), 1.68–1.57 (m, 2H). 13C NMR (101
MHz, CDCl3): δ 164.4, 140.4, 138.1, 133.4, 130.4 (2*CH), 128.6 (2*CH), 127.1, 126.9, 124.7
(2*CH), 114.8 (2*CH), 114.7, 55.7, 47.5, 20.9, 17.1. IR: ν (cm−1) = 2952 (C–H), 1592 (C=C),
1362 (S=O asymmetrical), 1160 (S=O symmetrical), 1070 (C–O). HRMS (ESI): m/z calcd for
C19H20N3O3S [M + H]+ 370.1226; found: 370.1219.

5-((3,4-Dimethoxyphenyl)sulfonyl)-2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine (4c).
Compound (4c) was prepared according to the general procedure; the desired product was
obtained after chromatography on silica gel (eluent: DCM/EtOAc 6/4) as a brown solid
(70%). Mp: 132–133 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.78–7.71 (m, 2H), 7.59 (t, J = 1.6 Hz,
1H), 7.41–7.34 (m, 2H), 7.27 (d, J = 2.1 Hz, 1H), 7.26–7.23 (m, 1H), 6.92 (t, J = 5.9 Hz, 1H),
6.75 (d, J = 2.1 Hz, 1H), 3.99–3.94 (m, 2H), 3.93 (t, J = 2.4 Hz, 3H), 3.66 (t, J = 1.8 Hz, 3H),
2.65–2.58 (m, 2H), 1.65–1.55 (m, 2H). 13C NMR (101 MHz, CDCl3): δ 154.1, 149.4, 140.5,
138.0, 133.2, 128.6 (2*CH), 127.2, 126.8, 124.7 (2*CH), 122.1, 114.7, 110.9, 109.7, 56.2, 56.2,
47.6, 21.0, 16.9. IR ν (cm−1) = 2359 (C-H), 1585 (C=C), 1508 (C=C), 1361 (S=O asymmetrical),
1263 (C–O), 1159 (S=O symmetrical), 1013 (C–N). HRMS (ESI): m/z calcd for C20H22N3O4S
[M + H]+ 400.1324; found: 400.1325.

5-((4-Nitrophenyl)sulfonyl)-2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b] pyridazine (4d). Com-
pound (4d) was prepared according to the general procedure; the desired product was
obtained after chromatography on silica gel (eluent: DCM/EtOAc 6/4) as a brown solid
(75%). Mp: 218–219 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.37–8.29 (m, 2H), 7.80–7.73 (m,
4H), 7.55 (s, 1H), 7.43–7.37 (m, 2H), 7.32–7.27 (m, 1H), 4.06–3.98 (m, 2H), 2.65 (t, J = 7.2 Hz,
2H), 1.67–1.54 (m, 2H). 13C NMR (101 MHz, CDCl3): δ 151.0, 141.7, 140.0, 138.8, 133.0,
129.5 (2*CH), 128.7 (2*CH), 127.4, 124.8 (2*CH), 124.7 (2*CH), 114.1, 47.9, 21.0, 17.6. IR: ν
(cm−1) = 2359 (C–H), 1529 (C=C), 1346 (S=O asymmetrical), 1168 (S=O symmetrical), 1066
(N–O), 1002 (C–C). HRMS (ESI): m/z calcd for C18H17N4O4S [M + H]+ 385.0973; found:
385.0965.

5-((5-Chloro-2-methoxyphenyl)sulfonyl)-2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine
(4e). Compound (4e) was prepared according to the general procedure; the desired product
was obtained after chromatography on silica gel (eluent: DCM/EtOAc 7/3) as a brown
solid (65%). Mp: 135–136 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.94 (d, J = 2.6 Hz, 1H),
7.79–7.72 (m, 2H), 7.59–7.51 (m, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.29–7.21 (m, 1H), 6.88 (d,
J = 8.9 Hz, 1H), 4.00–3.93 (m, 2H), 3.51 (s, 3H), 2.82 (t, J = 7.2 Hz, 2H), 1.76–1.66 (m, 2H).13C
NMR (101 MHz, CDCl3): δ 156.4, 139.9, 137.4, 136.0, 133.7, 131.3, 128.6 (2*CH), 126.9, 126.9,
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125.8, 124.7 (2*CH), 115.1, 113.9, 56.7, 47.6, 21.2, 17.7. IR: ν (cm−1) = 2939 (C–H), 1479 (C=C),
1277 (S=O asymmetrical), 1159 (S=O symmetrical), 1004 (C–C). HRMS (ESI): m/z calcd for
C19H19ClN3O3S [M + H]+ 404.0828; found: 404.0830.

5-((4-(Trifluoromethyl)phenyl)sulfonyl)-2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine
(4f). Compound (4f) was prepared according to the general procedure; the desired product
was obtained after chromatography on silica gel (eluent: DCM/EtOAc 7/3) as a white
solid (78%). Mp: 157–158 ◦C. 1H NMR (300 MHz, CDCl3): δ 7.77 (d, J = 8.2 Hz, 4H), 7.70
(d, J = 8.3 Hz, 2H), 7.55 (s, 1H), 7.40 (dd, J = 10.5, 4.8 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H),
4.07–3.89 (m, 2H), 2.62 (t, J = 7.2 Hz, 2H), 1.71–1.52 (m, 2H). 13C NMR (75 MHz, CDCl3): δ
140.2, 139.5, 138.5, 136.1 (q, JCq-F = 33.4 Hz, Cq-F), 133.0, 128.7, 128.6, 127.4 (2*CH), 126.8 (q,
3JCHAr-F = 3.7 Hz, 2C, CHAr), 124.8 (2*CH), 122.8 (q, 1JC-F = 273.3 Hz, CF3), 114.2 (2*CH),
47.8, 20.9, 17.5. 19F NMR (376 MHz, CDCl3): δ −63.2 (s, 1F). IR: ν (cm−1): 3167 (C–H), 1612
(C=C), 1372 (S=O asymmetrical), 1324 (S=O symmetrical), 1061 (C–N). HRMS (ESI): m/z
calcd for C19H17F3N3O2S [M + H]+ 408.0989; found: 408.0988.

5-(Naphthalen-1-ylsulfonyl)-2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine (4g). Com-
pound (4g) was prepared according to the general procedure; the desired product was
obtained after chromatography on silica gel (eluent: DCM/EtOAc 7/3) as a white solid
(60%). Mp: 79–80 ◦C. 1H NMR (300 MHz, CDCl3): δ 8.34 (d, J = 8.7 Hz, 1H), 8.20 (dt, J = 8.3,
1.9 Hz, 2H), 7.96 (d, J = 7.7 Hz, 1H), 7.64–7.52 (m, 5H), 7.37–7.30 (m, 2H), 7.23 (ddd, J = 6.7,
4.0, 1.2 Hz, 1H), 6.89 (s, 1H), 4.07–3.95 (m, 2H), 2.63 (t, J = 7.3 Hz, 2H), 1.79–1.66 (m, 2H). 13C
NMR (75 MHz, CDCl3): δ 141.1, 138.1, 136.2, 134.2, 133.5, 132.2, 131.7, 129.0, 128.9, 128.7,
128.5 (2*CH), 127.5, 127.0, 124.8 (2*CH), 124.3 (2*CH), 114.1, 47.1, 20.7, 18.1. IR: ν (cm−1):
1609 (C=C), 1505 (C=C), 1368 (S=O asymmetrical), 1166 (S=O symmetrical). HRMS (ESI):
m/z calcd for C22H20N3O2S [M + H]+ 390.1277; found: 390.1270.

3.3. Biology

The growth level of four cancer cell lines was determined using a colorimetric MTT
(thiazolyl blue tetrazolium bromide, Sigma, Saint-Quentin-Fallavier Cedex, France) assay.
Cancer cell lines and growth medium were obtained from CLS Cell Line Service GmbH,
Eppelheim, Germany). Human skin melanoma SK-MEL-28, mouse melanoma skin B16-
F1 and human brain glioma HS683 were grown in DMEM, supplemented with 4.5 g/L
glucose, 2 mM L-glutamine and 10% FBS. The human lung carcinoma cell line A-549
was grown in DMEM: Ham’s F12 (1:1) supplemented with 2 mM L-glutamine and 5%
FBS and human breast adenoma carcinoma MCF-7 in EMEM supplemented with 2 mM
L-glutamine, sodium pyruvate, NEAA, 10 µg/mL insulin human and 10% FBS. MTT
assay is based on the reduction of the yellow product thiazolyl blue tetrazolium bromide
(MTT) to purple-blue formazan by mitochondrial dehydrogenase of metabolically active
cells. The number of living cells after incubation in the presence (or absence, control) of
the tested molecule is directly proportional to the blue color, which was measured by
spectrophotometry. Briefly, cells were seeded (100 µL of a 2,5.104 cells/mL suspension) in
96-well culture plates (Nunc™ Edge 2.0, Fisher, Illkirch Cedex, France) and incubated for
24 h. Each compound (starting from DMSO solutions, stable for months) was assessed in
serial dilution (four concentrations in 0.1% DMSO at the highest concentration) in three
replicates (n = 3) and incubated for 72 h. Thereafter, MTT (5 mg/mL solution in PBS)
was added to each well (10% v/v) and cells were further incubated for 4 h. Then, after
removing the culture medium, the blue crystals were dissolved in 100 µL 100% DMSO and
absorbance measured at 540 nm using a 620 nm reference. Absorbance of the serial dilution
of each cell line treated under the same conditions, but without the tested compounds, was
measured to generate a standard curve, allowing IC50 determination (IC50 is defined as the
concentration reducing cell growth by 50%).

3.4. Molecular Docking

The approach starts by retrieving the PDB structure of the candidate kinases from
RSCB PDB database. Discovery Studio software (V 21.0.20298) was used to prepare the
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downloaded molecules by removing water molecules, already existent ligands and adding
polar hydrogens. In the next step we used AutoDockTools-1.5.6 to convert PDB structure
of the prepared macromolecule to PDBQT format after adding Kollman, Gasteiger charges
and AD4 type atoms. The ligand 4f was energy minimized using open babel binaries (2.4.0
release) and converted to PDBQT format using AutoDockTools-1.5.6. Vina executable was
run after specifying X, Y and Z coordinates of the macromolecule, as well as the radius
value in the configuration file. The resulting conformations were separated using vina split
executable and visualized in the Discovery Studio software.

4. Conclusions

In conclusion, a new series of 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine
derivatives bearing sulfonamides were designed and synthesized in a three-step sequence,
starting with a condensation reaction between 2-bromoacetophenone and 3-amino-6-
chloropyridazine. Then, the obtained products were subjected to a reduction reaction.
The final step, the N-sulfonylation reaction, was achieved by using a variety of sulfonyl
chlorides. The in vitro cytotoxic potential of these new compounds were screened against
A549, HS-683, MCF-7, SK-MEL-28 and B16-F1 cell lines. The compounds 4e and 4f dis-
played good cytotoxic activities against cancer cell lines, MCF-7 and SK-MEL-28, with IC50
values in low micromolar range. Molecular docking studies of the 4e have showed a strong
binding with CSF1R, ErbB2, BRAF and MEK2 kinases. On the other hand, the compound
4f also presents high binding affinities with BRAF, CDK4, KIT, MEK2 and PDGFRA kinases.
Importantly, the overexpression of these kinases is linked to MCF-7 and SK-MEL-28 cancer
cell line proliferations. The obtained results are very promising and demonstrate that the
new compounds 4e and 4f could lead towards anticancer drug development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27165238/s1, 1H and 13C NMR spectra and HRMS
spectra.
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