
HAL Id: hal-04331570
https://univ-orleans.hal.science/hal-04331570

Submitted on 8 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From boundary lines to boundary surfaces for dynamic
programming with final state constraints ⋆

Willy Cottin, Yuqi Liu, Guillaume Colin, Alain Charlet, Sébastien Houillé

To cite this version:
Willy Cottin, Yuqi Liu, Guillaume Colin, Alain Charlet, Sébastien Houillé. From boundary lines
to boundary surfaces for dynamic programming with final state constraints ⋆. IFAC-PapersOnLine,
56 (2), pp.11497-11502, 2023, IFAC World Congress (Tokyo), �10.1016/j.ifacol.2023.10.440�. �hal-
04331570�

https://univ-orleans.hal.science/hal-04331570
https://hal.archives-ouvertes.fr

From boundary lines to boundary surfaces
for dynamic programming with final state

constraints ⋆

W. Cottin ∗,∗∗ Y. Liu ∗∗ G. Colin ∗∗ A. Charlet ∗∗ S. Houillé ∗

∗ Advance Research Department, Stellantis, 78943 Vélizy-Villacoublay,
France (e-mail: willy.cottin@stellantis.com).

∗∗ Univ. Orléans, PRISME EA4229, Orléans, France (e-mail:
guillaume.colin@univ-orleans.fr)

Abstract: This article addresses the generalization of the boundary lines method for Dynamic
Programming, called here boundary surface. This method can be applied on any system with
2 states as long as there are border constraints (initial or final). The method has been applied
to two different problems. The first one is a simplified convex acceleration problem with final
constraints on speed and position. The second problem is the energy minimization of a parallel
hybrid electric vehicle along a trip in a non linear and non convex formulation. Results show
a non negligible accuracy improvement despite the increase in calculation time. This can yield
more accurate optimal results than those found by any possible mesh grids on an average
computer for a reasonable calculation time.

Keywords: Dynamic Programming (DP), Boundary Lines (BL), Boundary Surface (BdS),
Optimal Control Problem (OCP), Energy Management Strategy (EMS)

1 Introduction

Vehicle powertrain electrification is considered an efficient
solution to the problem of reducing CO2 emissions from
the automotive industry. Electrification requires multiple
power sources in one vehicle, making a control to distribute
the powers, called Energy Management Strategy (EMS),
necessary. To evaluate the performance of strategies, cri-
teria are mandatory. Moreover, an optimal control policy
can help to correctly size a given system. Naturally in
the automotive field, the first criterion to be minimized
is the fuel consumption. However, with electrification,
it is more appropriate to minimize energy consumption.
These strategies can be written as Optimal Control Prob-
lems (OCP) and solved using optimal control methods.
One method is Dynamic Programming (DP), a numerical
method developed by R. Bellman in the 50s (Bellman,
1954). The OCP can also be written in its dual form and
solved with the Pontryagin Maximum Principle (PMP)
(Pontryagin, 1987).

Since PMP is an analytical method, the problem resolution
is faster than with DP resolution. However, the main
drawbacks of this method are constraints and non linearity
considerations throughout the simulation, which cannot be
easily handled with PMP but are straightforward with DP.
This is mainly why DP is one of the reference methods to
solve OCP. As DP is a numerical method, it explores all
the possibilities and then determines the optimal control

⋆ This paper is supported by the Association Nationale de la
Recherche et de la Technologie (ANRT) through a CIFRE contract.
It is also developed under the collaborative framework OpenLab
Energetics between Stellantis and PRISME laboratory.

policy to apply to the dynamic system while minimizing a
given criterion.

Because of the computation time and memory complexity
of DP, research has been conducted to optimize it in order
to handle increasingly complex systems. For example,
Approximate Dynamic Programming (ADP) (Bertsekas,
2008) replaces the cost-to-go matrix in the backward step
to avoid multiple interpolations. A second possibility is to
use Iterative Dynamic Programming (IDP) (Luus, 2019).
This solution aims to reduce time calculation by using a
coarse mesh grid for all domains. Then, the same mesh
grid is reused but domains are contracted around the
previous solution. This provides an interesting accuracy for
a reasonable calculation time. Another branch of research
to reduce calculation time and calculation complexity has
focused on Boundary Lines (BL) (Sundström et al., 2010).
This consists in determining the extreme states that can be
visited while satisfying final constraints. In the literature, a
single state boundary line problem is well known. However
the resolution of boundary lines for two states or more,
called boundary surface (BdS) here, does not have an
explicit solution. The study in (van Schijndel et al., 2014)
attempted to estimate BdS for a two-states problem in
order to mesh only in this area. This produces a more
accurate result with the same mesh resolution.

In section 2, the Optimal Control Problem formulation
is provided. Then in section 3, Dynamic Programming
and the boundary surface method are explained. These
methods are applied on two models in section 4. Section 5
concludes the paper.

2 Optimal Control Problem formulation

The Optimal Control Problem formulation for a system
consists in minimizing a given criterion while respecting
constraints. The cost function J(x,u) is composed of the
instantaneous cost L (x(t),u(t)) that is the consequence
of the inputs applied to the system and states which the
system passes through. The second element Φ (x(tf)) is
a penalty term applied as a function of the final system
state. The OCP in its continuous form is the following one:

min
u

J(x,u) =
∫ tf

t0
L(x(t),u(t))dt+Φ

(
x
(
tf
))

w.r.t.:

ẋ(t) = f(x(t),u(t))

x(t) ∈ Xt,∀t ≥ t0
u(t) ∈ U t, ∀t ≥ t0

(1)

where x and u are respectively the state and the input
vectors. ẋ is the state derivative (the dynamics) which
depends on the inputs and the current states. The input
and state sets are defined as:

U = {u ∈ Rn,umin(t) ≤ u(t) ≤ umax(t)}
X = {x ∈ Rm,xmin(t) ≤ x(t) ≤ xmax(t)}

(2)

Since DP is a numerical method, the OCP will be written
in discrete form which requires a grid of inputs, states and
time, giving:

min
u

J(x,u) =
∑N−1

k=0
L(k,xk,uk) + Φ (xN)

w.r.t.:

xk+1 = fk(xk,uk)

xk ∈ Xk, ∀k ≥ 0

uk ∈ Uk, ∀k ≥ 0

(3)

Here, Φ (xN) is evaluated at each state mesh point at final
time. There are several ways to treat this. One is to impose
an infinite penalty for all final states that do not respect
the constraint, as shown in equation (4).{

if xN ∈ XN ,Φ(xN) = 0
else, Φ(xN) = Inf

}
(4)

Instead of considering infinity for Φ(xN) , it is also
possible to have a sufficiently large number which will
help the algorithm to find solutions. Another possibility
is to consider some smooth penalty. This is done by using
a given penalty function depending on final states. This
approach will not lead to an infeasible solution but it has
to be well tuned to converge to the target states.

3 Dynamic Programming

3.1 Dynamic Programming algorithm

Dynamic Programming is a numerical method to solve
OCPs. To do so, the discrete dynamic programming prin-
ciple is used:

V (k,xk) = min
u

(L(k,xk,uk) + V (k + 1,xk+1)) (5)

where V represents the cost-to-go function evaluated at
each point in the space domain. The algorithm is divided
in two parts. The first one, called backward, is a time loop
going from the end to the beginning of the simulation.
During this loop, the model is run in forward form:
xk+1 = fk(xk,uk) with xk all the possible states and uk

the possible inputs according to the mesh grid. Then the
instantaneous cost L(k,xk,uk) is determined. However, to

compute the whole cost-to-go matrix, an interpolation is
mandatory to estimate the value for all possibilities. This
interpolation can be either a nearest one, linear or any
other interpolation method. Finally, equation (5) is solved
for every state mesh node and the inputs associated to this
optimal cost are stored in an optimal input matrix.

The second part, called forward, is also a time loop but
going from the beginning to the end of the problem, where
optimal inputs are determined by using results from the
previous part. Moreover, the optimal policy is applied and
the optimal cost is calculated at each time step. In the
end, the whole system trajectory is determined as well as
the global optimal cost.

To respect the final constraints, the optimal cost-to-go
matrix is initialized with some values. These values were
explained in the previous section. If a hard penalty solution
is used, some interpolation errors may occur due to the
large values of penalties. Knowledge of the boundaries
reduce/avoid contamination of the cost-to-go and improve
DP accuracy.

3.2 Boundary Lines (BL)

Because the cost-to-go matrix can be contaminated with
penalties, this may lead to a poor construction of the cost-
to-go matrix and furthermore to a poor result. The role of
boundary lines is to determine exactly where the frontier
between the feasible and infeasible domain is. Thus, BL
prevents this contamination from occurring.
BL operate with some assumptions. A first assumption is
that all possible states existing in the boundary area are
really feasible. This means that if a state is included in
the area described by the boundary contour, then there is
necessarily a solution to achieve the simulation in the final
boundary area. In other words, it is impossible to have
an area of infeasible points inside the boundary area. A
second assumption is that the model used can be inverted.
If not, it is impossible to do step 2.(a) of the following
algorithm. BL are then determined by using the dynamic
equations in the inverted form xk = xk+1−f−1

k (xk+1,uk).

The algorithm used to determine BL is as follows:
1.Initialize the xend with target boundary final states.
2.Backward loop in time for k = N − 1 to 0:
(a) determine upper and lower boundary lines at step k
from the inverted dynamic equations and the upper/lower
positions at time k + 1.
(b) store state solutions, associated input(s) and cost for
upper and lower boundary.
If the state solutions at time k are outside the constraints,
it is possible to enforce boundaries on these constraints
and determine the associated inputs and costs. Lastly
to determine boundaries and use the results during the
backward step of DP, another time loop can be done before
the backward one or it can be directly merged in the
backward loop.

An example of the use of boundaries is shown in blue in
Fig.1. From the point xi+1

k+1 it is possible to reach the blue
square which has no cost-to-go information. In order to
estimate this value, an interpolation with the two nearest
meshed points is done. In this example, one of the two
points is the lower boundary line. This interpolation can

be linear, nearest, etc. Thus the cost-to-go at the blue
square with a linear interpolation is:

V (k + 2,xblue
k+2) = V (k + 2,xi+2

k+2)

+ (xblue
k+2 − xi+2

k+2).
V (k,xbll

k+2)− V (k + 2,xi+2
k+2)

xbll
k+2 − xi+2

k+2

(6)

X
i+3 Jk

i+3 Jk+1
i+3

Jk+2
i+3

X
i+2

X
i+1

X
i

k k+1 k+2

Time index k

Infeasible

Feasible

S
ta

te
 v

a
ri
a
b
le

 x

Jk
i+2 Jk+1

i+2
Jk+2

i+2

Jk
i+1

Jk
low

Jk+1
low

Jk+2
low

Jk+1
i+1

Inf

InfInfInf

Fig. 1. Dynamic programming with cost-to-go of mesh and
boundary lines scheme

Fig.1 shows the cost-to-go of meshed points (in space and
time) whether in the feasible domain or not. Here, points
outside the feasible zone have a cost-to-go set to infinite.
Those zones are determined with boundary lines (the lower
one in red here). In this scheme, all meshed points below
the lower state at a certain time index are considered to
be infeasible. Moreover, for each point belonging to the
boundary line the cost-to-go is known and has been used to
determine the cost-to-go for meshed points in the feasible
domain.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (-)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ta

te
 (

-)

Interest of Boundary Lines

DP with BL trajectory

DP without BL trajectory

Boundary lines

Fig. 2. Illustration of the interest of the boundary lines
method

Fig. 2 shows the trajectory difference between a classic
DP in a blue dashed line and DP with BL in black.Here
the boundary lines are shown in red dashed lines and the
same mesh is used for both DPs. At the beginning, the
trajectories are similar. However, from the first half of the
simulation,the black line drops below the blue one. The
division appears because of the boundary method. Thanks
to it, the cost-to-go matrix is now healthy in the area close
to the lower boundary lines. This leads to a better result
by decreasing the state in this example. At the end of the

simulation, DP without BL arrives in the center of the
target interval while DP with BL is led by the lower BL.
Once more, DP without BL cannot find a solution at the
border of the interval because of the proximity to infeasible
zones.

3.3 Boundary Surfaces (BdS)

To generalize BL to more complex systems, borders have to
be determined whatever the problem dimension is. How-
ever, when the system state dimensions are higher than
one, determining the boundary borders is more difficult
than for a single state problem. Because of the complexity
of the system, the upper/lower boundary situation cannot
be repeated since the borders are now continuous for a
time step and not two points, as is the case with boundary
lines.

In (van Schijndel et al., 2014), the reachable set of states
is determined from the union of the previous backward
reachable set and the convex set defined by the maximum
estimated values of each state. This method gives an
approximation of the reachable set of states which is
used to refocus the meshing only in this space. Even if
some infeasible spots exist in the reachable set the mesh
resolution will naturally exclude them because of their
results. However, because of the curse of dimensionality
of DP, a solution that works with a coarse mesh is
interesting. Thus in this article, the idea is to determine
the reachable set of states using only the previous meshed
set in backward. This makes it to work only with the initial
mesh (coarse of fine) without any change over time.

Continuity of the borders involves the estimation of all
possibilities from the boundary surface to determine a
new boundary surface. The boundary surface method is
used numerically such that non-analytical problems can
be solved. The boundary Xk is the set of points at the
edge of the feasible and infeasible zones. First of all, from
the previous boundary set, all the inputs are applied to
find all the points leading to the boundary Pk.

Pk = f−1(Xk+1,uk) (7)

In this set, some points are outside the constraints Ok so
they are removed Qk = Pk\Ok. Then, only points that are
on the edge are kept to build the new boundary set (8).

Q̄k is the closure while
◦
Qk is the interior of the Qk space.

Xk = Q̄k\
◦
Qk

(8)

This is done from k = N − 1 to 1 as in backward dynamic
programming.

To limit the calculation time and memory resources re-
quired for boundary surfaces, it is possible to sample points
belonging to this boundary. However, this sampling has
to be done to conserve as much information as possible
since points on the boundary could be massively placed
in specific areas while some other areas could have very
few points of information. Thus, if areas with fewer points
are removed by the sampling, then there is a huge loss
of information whereas if many points are removed from
the massively populated areas, the loss of information is
negligible. To perform the sampling, the perimeter of the
boundary is divided into multiple parts. If the number of
points in one part is higher than the maximum number

of points for a given part, then a sampling is done in
between all the points existing in this precise part. With
this solution, only parts with an excessive number of points
are reduced to the maximum number of points available
and parts with few points will keep all their points.

The boundary surface was determined here by using the
boundary Matlab function. This function takes as input
coordinates of the studied points along each dimension
and returns indexes of points belonging to the boundary
surface.

Fig.3 shows an example of an optimal trajectory with
boundary surfaces on the same figure.

Fig. 3. BdS illustration with optimal trajectory in state
space over time

4 Applications

4.1 Example 1: Acceleration problem with speed and po-
sition constraints

The first model used to illustrate the benefits of using BdS
is a simple convex problem with one command and two
states. This model (9) considers a vehicle trying to reach
a fixed speed vf and position pf at a precise timing tf .
Thus the system input is the acceleration u(t) = a(t) and
states are speed v(t) and position p(t).

ẋ =

(
v̇
ṗ

)
=

(
u
v

)
(9)

Here, the vehicle has to reach the given position pf = 200
m and speed vf = 100 km/h at a given time tf =
10 s. The optimization criteria is the integral of the
square of the instantaneous acceleration, which leads to
: L(x(t),u(t)) = a(t)2.

4.1.1 Optimal Control Problem resolution with Pontrya-
gin Maximum Principle
Since the problem is convex, it is possible to use PMP to
solve the OCP and have a reference to compare DP with
several solutions: with or without BdS and with smooth
penalty.

In this case the Hamiltonian H can be written as:
H(x(t),u(t), t) = L(x(t),u(t), t) + λT ẋ

=⇒ H(x(t),u(t), t) = u2(t) + λv(t).u(t) + λp(t).v(t)
(10)

where λp(t) and λv(t) are the co-states to be found.

As H is convex, the optimal input u∗(t) can be found as
follows:

∂H(x(t),u(t), t)

∂u∗(t)
= 0 =⇒ u∗(t) =

−λv(t)

2
(11)

while the co-state dynamics are defined by Eq. (12).

λ̇i(t) =
−∂(H(x(t),u(t), t))

∂xi

(12)

w.r.t.:

∫ tf

t0

u∗(t)dt = vf − v0,

∫ tf

t0

v∗(t)dt = pf − p0 (13)

From (13), it is possible to have analytical expressions of
the two co-states λv(t) and λp(t) and then include them
in expressions of optimal acceleration, speed and position
to fully resolve the problem.

4.1.2 Optimal Control Problem resolution with Dynamic
Programming
Dynamic programming is also used to solve this simplified
acceleration problem with constraints on speed and posi-
tion. The objective is to compare DP with and without the
BdS and also DP with smooth penalty (DPSP) to PMP.
Table 1 sums up the main results. In Table 1, penalty

Methods PMP DPSP
DP w/o
BdS

DP w/
BdS

Accel. Mesh (-) - 201 201 201

Speed Mesh (-) - 201 201 201

Position Mesh (-) - 201 201 201

Time step (s) - 0.1 0.1 0.1

Cost (-) 122 128.5 175.5 124.5

Final Speed (km/h) 100 100 110 101

Final position(m) 200 200 208 200

Table 1. Comparison of results between PMP
and DP with/without BdS and DPSP

Φ (xN) = 1020 if xN /∈ XN otherwise, Φ (xN) = 0. For

the smooth penalty DP, Φ (xN) =
∑2

i=1 C
i.(xi

N − xi
f)

with x1 = v, x2 = p and C(1,2) = 500. This smooth
penalty aims to have both states as close as possible to
their targets. To achieve this coefficients were tuned by
hand. Results show that DP without BdS has the highest
cost and is the farthest away from the final constraints.
DPSP satisfies the constraints and has a much lower cost
than DP without BdS. However, the best DP solution is
the one with BdS.

All solutions are shown in Fig.4 where the red dashed curve
is the PMP solution, the blue dashed curve is DP without
BdS, the green dashed curve is DP with smooth penalty
and the black curve is DP with BdS. All accelerations
have the same global behavior, i.e. full acceleration at the
beginning followed by a linear decrease until the end. The
PMP gives a pure linear acceleration while the three DP
solutions show some fluctuations on the input linked to the
numerical resolution of the problem. It is also important to
note that the fluctuations are higher and occur throughout
the simulation for DP without BdS, which leads to a
sub optimal solution. The behavior of DPSP is close to
that of DP with BdS. However, fluctuations at the end
are higher, leading also to a sub-optimality compared to
DP with BdS. Thanks to boundary surfaces, fluctuations

are lower and appear at the end of the simulation. This
behavior appears because the solution lies on or close
to the boundaries. Nonetheless the fluctuations remains
in the feasible domain throughout the simulation. At
the beginning in time of the boundary surface DP, the
acceleration is much smoother because of the use of
boundary surfaces during the backward part to improve
DP accuracy.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

50

100

150

200

P
o

s
it
io

n
 (

m
)

Position

DP with BdS

DP without BdS

DP SP

PMP

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

50

100

S
p

e
e

d
 (

k
m

/h
)

Speed

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-5

0

5

A
c
c
é

lé
ra

ti
o

n
 (

m
/s

²)

Accélération

Fig. 4. Acceleration problem resolution with PMP, DP
without BdS and DP with BdS

4.2 Example 2: Parallel Hybrid Electric Vehicle

The second model used to apply the methodology is a non
convex, non linear model which corresponds to a parallel
hybrid electric vehicle (De Jager et al., 2013). Here, the
vehicle powertrain is composed of a battery, a motor and
an irreversible power source (engine, turbine or other). The
irreversible power source is assumed to give only the exact
required power instantaneously. To calculate the required
power from the powertrain to follow the cycle, Newton’s
second law is used. Fig. 5 shows a block scheme of the
studied system. To propel the vehicle at a certain speed,
the powertrain has to provide wheel power PW . This power
can be provided by the engine PE and/or the motor PM .
To drive the motor power, the torque motor CM is used.
The battery State Of Charge (SOCB) is the ratio of the
actual capacity compared to the maximum capacity of the
battery. Moreover, to regulate the motor temperature TM

with the coolant mass flow ṁc, the battery provides power
PP to the coolant system. The battery also provides power
to the motor to ensure the motor power. The battery has
to ensure the sum of these two powers PK expressed in
eq.(14).

PK = ηM .PM if PM < 0

PK = PM
ηM

else

with: ηM =
CM (t).ωM (t)

CM (t).ωM (t)+R·
(

CM (t)

k

)2

(14)

For more information on the modeling, see (Cottin et al.,
2022). The 2 inputs 2 outputs system can be modeled as
follows:

x =

(
SOCB

TM

)
u =

(
CM

ṁc

)
(15)

Engine

Wheels

Ba�ery

Cooling
System

ECU

()

()

()

()

()

(-)

()

()

()

Motor

()

Fig. 5. Parallel Hybrid Electric Vehicle block scheme

with the following dynamics:

˙SOCB = (θ · ṁc(t) · Cpc · (TM (t)− Tc) +R ·
(
CM (t)

k

)2

+

CM (t) · ωM (t)).
−1

Q · (E + e · SOCB(t))
(16)

ṪM =
R ·

(
CM (t)

k

)2

− ṁc(t) · Cpc · (TM (t)− Tc)

mm · Cpm
(17)

Eq. (16) describes the battery State Of Charge SOCB

variation over time. It depends on the power spent to use
the cooling system θ · ṁc(t) ·Cpc · (TM (t)−Tc), the motor

losses R · (CM (t)
k)2 and the propulsion CM (t) · ωM (t). The

first power varies over time since it depends on the mass
flow input ṁc(t) and the motor temperature state TM (t).
The cooling temperature Tc, thermal capacity Cpc and
the thermal to electric power coefficient θ are constants.
Power losses are defined by the constant motor resistance
R and its intensity which is function of the torque motor
input CM (t). The required power to propel the vehicle
is a function of the motor torque and speedωM (t). These
two variables vary in time. In order to have an intensity,
electrical powers are divided by the battery voltage which
is modeled here by a constant voltage E plus a voltage
function of the battery State Of Charge e ·SOCB(t). Thus
this voltage is a function of time. Lastly, this intensity is
divided by the maximum capacity of the battery Q.
Eq. (17) which captures the motor temperature dynamic
over time, is a thermal power balance. It describes the
dynamic function of the heating power, losses here, and
the power removed by the cooling system.

In this optimal control problem, the objective is to mini-
mize the overall vehicle energy consumption while manag-
ing the battery state of charge and the motor temperature.
The trip to achieve here is the WLTC cycle. The variables’
constraints are expressed in (18).

0 ≤ SOCB(t) ≤ 1

20 ≤ TM (t) ≤ 60

−100 ≤ CM (t) ≤ 100

0 ≤ ṁc(t) ≤ 0.05

(18)

The instantaneous criterion is expressed in (19). The
objective here is to ensure a trip repeatability while
optimizing the motor temperature.

L(x(t),u(t)) =
√

P 2
E(u(t)) + f (TM) · P 2

B(u(t))

with f (TM) = aT 2
M + bTM + c

(19)

Coefficients a, b and c are representative of the electrical
efficiency of the powertrain.

0 500 1000 1500

Time (s)

-100

-50

0

50

100

C
 (

N
m

)

Motor Torque

0 500 1000 1500

Time (s)

0

0.01

0.02

0.03

0.04

0.05

m
c
 (

k
g
/s

)

Coolant mass flow

0 500 1000 1500

Time (s)

20

30

40

50

60

T
 (

°C
)

Motor Temperature

0 500 1000 1500

Time (s)

0

0.2

0.4

0.6

0.8

1

S
O

C
 (

-)

SOC

DP with BdS at 40 mesh

DP without BdS at 40 mesh

DP without BdS at 140 mesh

Projected BdS

Fig. 6. Parallel hybrid electric vehicle optimal solution
with boundary surface

Fig.6 presents the solutions given by DP without BdS
with 100 mesh points for each variable in dashed red and
with 20 mesh points for each variable in dashed black.
DP with BdS is also shown with blue lines while the BdS
projected in one state space and time is presented as a
dashed blue line. The solution found by DP with BdS uses
the mass flow coolant during all the trip compared to DPs
without BdS. Thus the motor temperature is maintained
at the right temperature with respect to the constraints.
Moreover, the distribution of powertrain power seems to
be more efficient to achieve the trip at the minimum
acceptable final SOCB . The results is a lower energy
consumption since there is no unnecessary battery filling.

Even with the small number of meshes for the BdS, the
management of the final constraints SOCB ≥ 0.61 and
TM ≥ 37°C is much better. It can be seen that BdS is
closer than classical DP to the minimum final constraint
value, leading to a reduced sub-optimality. The results are
shown in Table 2.

Methods
DP w/o
BdS

DP w/o
BdS

DP w/
BdS

Mesh points (-) 40 140 40

Cost (MJ) 11.1 8.3 6.8

TM (tf) (°C) 40.2 37.5 37.4

SOCB(tf) (-) 0.78 0.7 0.61

Calc. Time (s) 336 55 168 55 566

Table 2. Result comparison between DP with-
out and with BdS

The above results show the final system states for three
different simulations shown in Fig. 6. The computer used
is an Intel CORE i7 processor at 3.6 GHz with 96 Go of
RAM. It shows the utility of the BdS through the expected
cost, which is the smallest one despite the allocation of
resources. However, for the same mesh grid, the total cal-
culation time is much higher because of the interpolation
function while considering the boundary surface points. To
achieve the same optimal result, BdS required less time
than DP without BdS, making it a valuable option. On
top of this, it might be possible to reduce this calculation
time and thus obtain even greater benefit from the BdS.

5 Conclusion

This article presents a solution to extend the Bound-
ary Lines method for one-state problems to a Boundary
Surface method for two-states problems. Usage has been
shown on two problems: one convex problem solved with
PMP and DP and one non-convex problem solved only
with DP with/without the BdS. The idea was to estimate
the usefulness of the BdS for multi-state systems in the
resolution of the optimal control problem.

For a simplified convex problem, a comparison between
PMP and DP with/without BdS and DP with smooth
penalty was done. It shows that for the same mesh grid,
if the smooth penalty is well tuned, BDSP can satisfy
final constraints with a lower cost than DP without BdS.
However, BdS offers results much closer to the reference
set by PMP than DP without BdS or with smooth penalty.

The boundary surface solution was then tested on a convex
and a non-linear and non convex system to compare the
results of DP with and without BdS. In this case, a
comparison with PMP is no longer possible. Results show
that the calculation time is much higher with BdS for the
same mesh grid but that the gain in accuracy is very high.
In such that it is possible to have a better solution than
the finest mesh grid possible with an average computer for
a reasonable calculation time.

Based on the way this BdS works, it is possible to use
the proposed method on systems with more than 2 states.
For systems with 3 states, the boundary will be edges of a
volume and for more than 3 states, the feasible area will
be an hypervolume. Since the calculation time with BdS
can be high, future work will focus on reducing the time
needed for the BdS method.

References

Bellman, R. (1954). The theory of dynamic programming.
Bulletin of the American Mathematical Society, 60(6),
503–515.

Bertsekas, D.P. (2008). Approximate dynamic program-
ming.

Cottin, W., Colin, G., Charlet, A., and Houillé, S. (2022).
On the use of frequency analysis tools to minimize
the calculation complexity of optimal control problems.
IFAC-PapersOnLine, 55(16), 424–429.

De Jager, B., Van Keulen, T., and Kessels, J. (2013).
Optimal control of hybrid vehicles. Springer.

Luus, R. (2019). Iterative dynamic programming. Chap-
man and Hall/CRC.

Pontryagin, L.S. (1987). Mathematical theory of optimal
processes. CRC press.

Sundström, O., Ambühl, D., and Guzzella, L. (2010). On
implementation of dynamic programming for optimal
control problems with final state constraints. Oil & Gas
Science and Technology–Revue de l’Institut Français du
Pétrole, 65(1), 91–102.

van Schijndel, J., Donkers, M., Willems, F., and Heemels,
W. (2014). Dynamic programming for integrated emis-
sion management in diesel engines. IFAC Proceedings
Volumes, 47(3), 11860–11865.

