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General introduction

1 Motivation

In the last years, stringent emission regulations, as well as fossil fuels resources reduction have
triggered a determined orientation toward alternative transportation technologies. The techniques of
improvement span several fields, such as alternative fuels (compressed natural gas, hydrogen, bio-diesel),
new engine types such as homogeneous charge compression ignition (HCCI) or alternative vehicles
such as hybrid and all-electric vehicles. Several types of hybridization can be distinguished: fly-wheel,
pneumatic, hydraulic and electric, the latter being the most encountered. The market development of
hybrid electric vehicles depends on two main factors: financial benefit (cost of manufacture vs. customer
value) and environmental impact (electric energy production, components recycling), which are strongly
dependent on the local policies and continuously subject to changes.

Three main optimization layers for hybrid electric vehicles can be identified: architecture choice, siz-
ing and control algorithms [7]. The former handles the position, number and type of electric machines,
type of storage element, engine and transmission. Sizing concerns the engine displacement, the maxi-
mum rated power of the electric machine and consequently, the battery capacity. The choices at these
two levels are mainly dictated by cost, performance requirements and packaging limitations i.e. occupied
volume. The latter spans different aspects, from high-level controller (speed regulator, lateral control)
to low-level such as throttle, lambda or knock control. All of them can be seen as optimization-based
decisions and the interplay between these layers suggest a hierarchical dependence in between the design
choices.

For a fixed architecture with given dimensions for its elements, one of the most challenging aspects
from a control perspective is the power distribution between the two power sources, problem referred
to as the energy management, which lays within upper-level control algorithms, as it usually provides
only the setpoints for the components. For a conventional vehicle, the powertrain setpoints of torque
and speed are directly determined from the driver’s request, in the case of a manual transmission or in
conjunction with a gearbox controller, if otherwise. For a hybrid electric vehicle (HEV), the question
that arises is how to exploit the additional degree of freedom - the electric path - such that the vehicle
performance is improved. For some specific cases, this answer is straightforward:

- if the vehicle is braking, instead of dissipating the kinetic energy as heat, it can be recovered by
the electric machine to replenish the energy storage element (usually a battery) and use this energy
later, during electric traction

- if the engine cannot provide the required torque on its own, the motor can assist it and therefore,
allow a more dynamic driving

- if an engine start is requested, the electric machine, depending on its position, can ensure a fast
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restart, without the need, for example, of a belt-integrated starter generator (BSG)

In general though, the contribution of each element (the engine and the motor) needs to be calculated,
if both of them can participate to traction. First, an objective needs to be defined and the most encountered
is the reduction of fuel consumption. A basic strategy would be to use the electric motor at low speeds and
torques and the hybrid mode such that the overall efficiency is maximized, within a rule-based approach
[8], [9]. Although it presents the advantage of simplicity in design and implementation, this strategy
suffers from an important lack of portability, since it is strongly application-oriented. Moreover, the use
of the powertrain efficiency as a performance objective is not necessarily an indicator of the fuel gain
improvement. Therefore, it is more appropriate to explicitly consider the fuel consumption, which can
be done either by evaluating a static map or by an approximation model.

In addition to the fuel consumption reduction, which remains the main goal, other objectives can
also be envisioned: drivability (related mostly to gearshifts [10]), pollutant emissions minimization [11],
[12] and battery lifetime extension [13], [14]. Multi-objective optimization problems are difficult to be
handled in a heuristic framework, which enforces the choice of model-based approaches.

The design of energy management strategies targets an on-line implementation, which can only en-
sure suboptimal results. A complete evaluation of their performance is usually done relative to the global
optimum, obtained with an offline strategy and which is an indicator of the potential of an HEV for a
given scenario. In this case, the drive cycle is considered entirely known in advance and the most pop-
ular algorithm used to solve this problem is dynamic programming [15]. Complete information about
the speed profile and road grade is unrealistic and therefore, its usage is restricted to offline methods, but
future information about the traffic can be available for a limited horizon, with a certain accuracy, which
encourages the use of predictive control strategies [16], [17], [18], [19].

Among these strategies, model predictive control (MPC) emerges as a solution with a high potential.
It shows an increased presence in the automotive industry, with applications spanning several fields, such
as engine control [20], lateral vehicle dynamics [21], cruise control [22] or autonomous vehicle [23].
MPC is a model-based constrained optimization strategy, which calculates a sequence of commands that
minimizes a cost function over a finite horizon, but where only the first command is applied. It combines
therefore the open-loop optimal control with the feedback from the system. Its capacity of handling
constraints and predictive data makes it an attractive alternative to the currently most popular energy
management strategy, Equivalent Consumption Minimization Strategy (ECMS) [24], [25], [26].

MPC can be found under various forms, depending on the nature of the prediction model (linear,
linear time-varying and nonlinear) and of the cost function (usually linear or quadratic). Standard MPC
formulations such as quadratic programming are generally preferred, due to the existence of dedicated
efficient solvers and this formulation will be also retained in the present thesis.

Modeling is the first step in the MPC design and for the energy management problem a powertrain
control-oriented model is needed, which has been addressed in the literature, mostly for specific case
studies. Considering the diversity of hybrid powertrain architectures, a unified model would be an useful
tool and current state-of-the-art witnessed attempts toward this direction [27], [28]. A feature that would
complete the existing work is the introduction of a dual-clutch transmission-based HEV.

The cost function is another fundamental element in the MPC design and in general, a criterion ex-
pressed as a trade-off between tracking error and command effort reduction is employed. For the energy
management problem, the cost function definition is not straightforward. The objective is to reduce the
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fuel consumption by exploiting an additional source of energy, which cannot be replenished from the
grid in the case of an HEV without a plug-in. The performance evaluation needs to take into account the
consumption of two types of energy sources, placing the problem into an energetic framework. There-
fore, two main aspects that need to be solved can be identified at this level: the mathematical expression
for the energetic problem and its processing for a standard formulation.

The cost function tuning has a major impact on the control performance and for the considered prob-
lem, it is a particular challenge, due to its high dependence on the drive cycle. The interest is to find a
mechanism that facilitates the tuning factor adaptation with respect to the speed and road grade profile.
The access to traffic preview data can be exploited in order to extract information about the drive cycle
characteristics and frequency analysis is a potential tool [29], [6].

It is not uncommon to handle the gearshift strategy outside the energy management, which reduces
the considered problem to torque distribution. Engine stop-start can bring an important fuel gain for
an HEV, especially in urban driving and therefore, it is often addressed by the energy management,
either separately from [30] or in conjunction with the torque split [31]. For a standard MPC-based for-
mulation, this would imply the introduction of a discrete control variable, leading to a mixed-integer
linear/quadratic problem, which needs a more computationally expensive solver. For a greater flexibility,
sometimes it is preferred to propose a formulation that handles at a first stage only the main objective
(here, the torque split), but where extensions (engine stop-start or drivability) are allowed without major
changes.

The speed profile is often imposed by the drive cycle and its tracking is handled at an upper level,
by a driver model, but in some cases, it represents an additional degree of freedom used for fuel gain
improvement [32], [33]. The driver behavior has also an important impact on the fuel consumption
and therefore, speed profile adjustments may be introduced in the energy management framework. A
functionality with this potential is coasting or free-wheeling, where the vehicle movement is determined
only by resistive forces, the gas and brake pedal not being pressed. The potential of coasting in fuel gain
has been the object of a rather limited number of papers, as far as the authors’ knowledge is concerned,
and it addressed mainly the constant speed phases on highway. Moreover, the focus was on conventional
vehicles and to a less extent for hybrid electric passenger cars. An analytical approach that extends the
problem to time-varying speed sections would provide a generalized tool for the performance evaluation
and hence, completing the existing analysis.
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2 Motivation (en français)

Dans les dernières années, le durcissement des normes d’émissions, ainsi que la réduction de ressources
de carburants ont déclenché une orientation déterminante vers des technologies de transportation alterna-
tive. Les méthodes d’amélioration couvrent différents domaines, comme les carburants alternatifs (gaz
naturel comprimé, hydrogène, bio-diesel), de nouveaux types de moteurs, comme HCCI (homogenous
charge compression ignition) ou des véhicules alternatives, comme les véhicules hybrides ou électriques.
Plusieurs types d’hybridation peuvent être distingués : volant d’inertie, pneumatique, hydraulique et
électrique, le dernier étant le plus rencontré. Le développement du marché des véhicules électrique -
hybrides dépend de deux facteurs principaux : le bénéfice financier (le coût de production vs. Customer
value ) et l’impact environnemental (production de l’énergie électrique, le recyclage des composantes),
qui dépendent fortement des politiques locales et qui sont continuellement soumises aux changements.

Il y a trois niveaux d’optimisation qui peuvent être distingués : le choix de l’architecture, le di-
mensionnement et les algorithmes du contrôle [7]. Le premier gère la position, le nombre et le type de
machine électrique, le type d’élément de stockage, le moteur et la transmission. Le dimensionnement
concerne la cylindrée du moteur, la puissance maximale de la machine électrique et par conséquent, la
capacité de la batterie. Ces choix sont notamment dictés par le coût, les critères de performance et les
limitations liées au packaging (le volume occupé). Le dernier niveau d’optimisation couvre différents
aspects, du contrôleur haut-niveau (le régulateur de vitesse, contrôle latéral) au bas-niveau, comme la
commande du papillon, de la richesse ou du cliquetis. Tous peuvent être regardés comme des décisions
optimisation-based et l’interdépendance entre ces couches suggère une dépendance hiérarchique entre
les décisions du design.

Pour une architecture avec un dimensionnement fixé, un des aspects les plus compliqués d’une per-
spective orientée contrôle est la distribution de puissance entre les deux sources, problème appelé gestion
d’énergie, qui se retrouve au niveau des algorithmes de contrôle, parce qu’elle ne fournit généralement
que les références pour les couples des composantes. Pour un véhicule conventionnel, les références de
couple et vitesse pour le groupe motopropulseur (GMP) sont directement déterminées de la demande
conducteur, dans le cas d’une transmission manuelle ou en conjonction avec un contrôleur de boîte de
vitesse, dans le cas contraire. Pour un véhicule électrique hybride (HEV), la question qui surgit est com-
ment exploiter le degré de liberté supplémentaire - la voie électrique - afin que la performance véhicule
soit améliorée. Pour certains cas spécifiques, la réponse est immédiate :

Si le véhicule freine, au lieu de dissiper l’énergie cinétique comme chaleur, elle peut être récupérée
par la machine électrique pour charger l’élément de stockage (en général une batterie) et utiliser son
énergie plus tard, pendant la traction électrique

- Si le moteur ne peut pas fournir tout seul le couple demandé, la machine peut l’assister et par
conséquent, permettre une conduite plus dynamique

- Si un démarrage moteur est demandé, la machine peut, selon sa position, assurer un démarrage
rapide, sans l’utilisation d’un BSG par exemple

Cependant, la contribution de chaque élément (le moteur et la machine) doit en général être cal-
culée, si les deux peuvent participer à la traction. Premièrement, un objectif doit être défini, le plus
répandu étant la réduction de la consommation carburant. Une stratégie élémentaire serait d’utiliser
la machine pour les faibles vitesses et couples et le mode hybride de manière à ce que le rendement
global est maximisé, dans le cadre d’une stratégie heuristique [8], [9]. Malgré sa simplicité, cette
stratégie présente un manque important de portabilité. De plus, le rendement du GMP en tant qu’objectif
d’optimisation n’indique pas nécessairement l’amélioration du gain en consommation. Il est donc plus
approprié d’explicitement considérer la consommation de carburant, qui peut se faire soit par l’évaluation

Page 4



2 Motivation (en français)

d’une cartographie, soit par un modèle d’approximation.
Outre la réduction de la consommation, qui demeure le but principal, d’autres objectifs peuvent

également être envisagés : l’agrément (lié essentiellement aux changements de rapports [10]), les émis-
sions de polluants [11], [12] et la durabilité de la batterie [13], [14]. Les problèmes d’optimisation
multi-objectifs sont difficilement gérés dans un cadre heuristique, ce qui renforce le choix des approches
basées sur des modèles. La conception des stratégies de gestion d’énergie cible une implémentation
en-ligne, qui ne peut assurer que des résultats sous-optimaux. Une évaluation complète de leur per-
formance est généralement réalisée relatif à l’optimum global, obtenu offline et qui est un indicateur
du potentiel d’un HEV pour un scénario donné. Dans ce cas, le cycle de conduite est supposé connu à
l’avance et l’algorithme le plus populaire utilisé à résoudre ce problème est la programmation dynamique
[15]. L’accès aux informations complètes sur le profil de vitesse et la pente n’est pas réaliste et donc,
son utilisation est restreinte aux méthodes offline, mais des informations futures sur le trafic peuvent
être disponibles pour un horizon limité, avec une certaine précision, ce qui encourage l’utilisation des
stratégies de contrôle prédictif [16], [17], [18], [19].

Parmi ces stratégies, model predictive control (MPC) émerge comme une solution avec un potentiel
considérable. Il est de plus en plus présent dans l’industrie de l’automobile, avec des applications qui
couvrent différents domaines, comme le contrôle moteur [20], la dynamique latérale du véhicule [21],
cruise control [22] où véhicule autonome [23]. MPC est une stratégie d’optimisation à base de modèle,
sous contrainte, qui calcule une séquence de commandes qui minimisent une fonction coût sur un horizon
fini, mais où seulement la première commande s’applique. Il combine donc le contrôle optimale boucle
ouverte avec le retour du système. Sa capacité de gérer les contraintes et les données prédictives le
rend une alternative attractive à la plus populaire stratégie de gestion d’énergie du présent Equivalent
Consumption Minimization Strategy (ECMS) [24], [25], [26].

MPC peut être trouvé sous des formes différentes, en fonction de la nature du modèle de prédiction
(linéaire, linéaire variant dans le temps et nonlinéaire) et de la fonction coût (habituellement linéaire ou
quadratique). Les formulations standard du MPC comme la programmation quadratique sont générale-
ment préférées, grâce à l’existence des solveurs dédiés efficaces et cette formulation sera également
retenue dans cette thèse.

La modélisation est la première étape du design MPC et pour le problème de gestion d’énergie un
modèle orienté-contrôle pour le GMP est nécessaire, qui a déjà été adressé dans la littérature, générale-
ment pour des études de cas spécifiques. Compte tenu de la diversité des architectures hybrides, un
modèle unifié apparat̂ comme utile et l’état de l’art courant témoigne des essais dans cette direction [27],
[28]. Une caractéristique qui compléterait le travail existant est l’introduction des HEV basés sur une
transmission double-embrayage.

La fonction coût est un autre élément fondamental dans le design du MPC et en général, on emploie
un critère exprimé comme un compromis entre la réduction de l’erreur de suivie de l’effort de commande.
Pour le problème de gestion d’énergie, la définition de la fonction coût n’est pas immédiate. L’objectif
est de réduire la consommation de carburant en exploitant une source supplémentaire d’énergie, qui ne
peut pas être rechargé de l’extérieur, dans le cas d’un HEV sans plug-in. L’évaluation de la performance
doit prendre en compte la consommation de deux types de source d’énergie, plaçant le problème dans un
cadre énergétique. Par conséquent, on peut identifier deux aspects principaux qui doivent être résolus à ce
niveau: l’expression mathématique pour le problème énergétique et son traitement pour une formulation
standard.
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La calibration de la fonction coût a un impact majeur sur la performance du contrôle et pour le prob-
lème considéré c’est particulièrement un défi, en raison de sa dépendance élevée du cycle de conduite. Le
but est de trouver un mécanisme qui facilite l’adaptation du terme de calibration en fonction du profile de
vitesse et de la pente. L’accès aux données prédictives peut être exploité pour extraire des informations
sur les caractéristiques du cycle et une analyse fréquentielle est un outil possible [29], [6].

Ce n’est pas inhabituel de traiter la stratégie du changement des rapports en dehors de la gestion
d’énergie, ce qui réduit le problème à la distribution du couple. Le stop-start du moteur peut apporter
un important gain en consommation pour un HEV, particulièrement pour la conduite urbaine et par con-
séquent, il est souvent adressé dans la gestion d’énergie, soit séparément [30], soit en conjonction avec
la distribution du couple [31]. Pour une formulation MPC classique, ça impliquerait l’introduction d’une
variable discrète du contrôle, conduisant vers une optimisation linéaire/quadratique mixed-integer, qui
nécessite des solveurs plus complexes. Pour une plus grande flexibilité, parfois c’est préférable de pro-
poser une formulation qui gère dans une première étape uniquement l’objective principale (pour le cas
considéré, la distribution du couple), mais qui permet des extensions (stop-start moteur ou agrément)
sans changements majeurs.

La vitesse véhicule est souvent imposée par le cycle de conduite et son suivi est géré à un niveau
supérieur, par un modèle conducteur, mais dans certains cas, il représente un dégrée de liberté supplé-
mentaire pour l’amélioration du gain en consommation [32], [33]. Le comportement du conducteur a
également un impact important sur la consommation et des ajustements du profil de vitesse peuvent donc
être introduits dans le cadre de la gestion d’énergie. Une fonctionnalité avec ce potentiel est le coasting
ou free-wheeling, où le mouvement du véhicule est donné seulement par les forces résistives, les pédales
d’accélération et de frein n’étant pas appuyées. Le potentiel du coasting pour le gain en consommation
a été l’objet de certains travaux publiés, mais plutôt peu nombreux, de la connaissance des auteurs, et ils
ont principalement traité les phases de vitesse constante sur l’autoroute. De plus, les études de cas étaient
concentrés sur les véhicules conventionnels et moins sur les véhicules hybrides. Une approche analy-
tique qui étend le problème pour les phases de vitesse variante dans le temps serait un outile généralisé
pour l’évaluation de la performance et par conséquent, compléterait l’analyse qui existe actuellement.
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3 Organization of the manuscript

The manuscript is organized in 4 chapters, that will be briefly introduced next. The first chapter de-
fines the framework, from both technological and control design methodology, whereas chapter 2 and 3
are dedicated to the contributions at the specific modeling and control level, respectively. Finally, chapter
4 validates the proposed strategy based on a Model-in-the-Loop simulation. Conclusions and perspec-
tives will complete the manuscript.

Chapter 1 presents an overview of hybrid electric vehicles, with a focus on the main aspects related to
model-based control: architecture types, performance evaluation (drive cycles for homologation, pollu-
tion norms), quasi-static modeling of main components (engine, gearbox, electric machine), dynamics of
energy storage elements and the framework of the energy management. For the latter topic an overview
is presented, the details being provided in chapter 3, together with a series of contributions.

Chapter 2 is dedicated to the generic control-oriented model for a hybrid powertrain. Firstly, current
attempts toward a general modeling are presented and next, the assumptions under which the proposed
model is valid are introduced and analyzed. The purpose of this model is to cover a certain class of hybrid
architectures that will allow the formulation of a generic model-based control strategy, regardless of the
electric machine position and transmission type. The wheel level offers complete information about the
hybrid powertrain and for a comprehensive description, intermediate levels are also considered. The
model is defined by two main components:

- static relations, given by torque expressions at different powertrain levels and speed of components

- dynamics related to the battery state-of-charge

The model is detailed for parallel and series architectures, with a special emphasis on dual-clutch
transmission powertrain which allow special use cases, as a result of the presence of two clutches. A
linear-based approach is chosen in this work and therefore, the construction of our results will be con-
sidered after building the linearization of the battery dynamics model and proposing several rules for its
online use as a prediction model. The goal of this work is to improve the fuel gain obtained with a hybrid
electric vehicle. The fuel rate is usually given as nonlinear map in function of engine torque and rota-
tional speed, but for a model-based approach, an analytic expression is needed. Hence, fuel consumption
approximation is also handled in this chapter.

Chapter 3 handles the energy management problem, which is the main topic of this thesis. The first
part continues the introduction from the first chapter with a detailed state-of-the-art of the control strate-
gies for this problem. The focus is on predictive methods, which will be used in the present work, too.
Fundamental notions about MPC are next presented, having as main goal the methodological aspects and
their particular structural properties in relationship with the energy management. The stability per se not
being an issue for this kind of application (nor the recursive feasibility) we will not dwell on the particu-
lar notions needed to reinforce convergence and their theoretical aspects, but concentrating our efforts in
the optimization of the cycles and on the particular implications of the battery management and the driv-
ing patterns. The goal is not to bring a contribution at the theoretical level but to formulate the problem
of the energy management in the MPC framework. This implies several steps: control-oriented model
(already handled in chapter 2), cost function definition, tuning and constraints formulation. The focus
will be at first on torque distribution, but it will be shown afterwards that the problem can be extended
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to include engine stop, too. The novelty of the strategy is that this functionality is introduced without
the use of an additional discrete control variable, nor by separation into a two-layer optimization. The
stop-start decision is taken a-posteriori, based on the sequence of commands provided by the MPC. An
improvement in the fuel gain can therefore be obtained without essentially changing the problem formu-
lation. This simplification is noticeable not only at the formulation level, but also at implementation: the
solver does not need to be changed in order to cope with binary decision variables (ON/OFF command
for the engine).

Another contribution is related to the tuning procedure: the cost function describes a trade-off be-
tween fuel and battery consumption, ensured by the use of a weighting term, whose choice is extremely
important for the strategy performance. Its dependence on the drive cycle makes its tuning a challenging
problem. The method proposed here takes into account the foreseen torque demand and the upper and
lower bounds of the two power sources. Based on these information, a ratio of variations between lower
and upper limits can be calculated and the tuning term is defined as an average over an horizon.

The chapter is finalized with the analysis and design of coasting. Here, unlike the previous work,
an analytical approach is proposed that decides the coasting initiation, duration and quantifies the accep-
tance of solution in terms of time-wise speed deviation.

Chapter 4 is dedicated to the Model-in-the-Loop validation of the proposed strategy. The case study
is a dual-clutch transmission hybrid with an electric machine connected to the even primary shaft. The
simulations are performed in Matlab/Simulink, with co-simulation in AMEsim, where the vehicle high-
fidelity model was designed. The performance is evaluated for different drive cycles and compared with
Pontryagin’s Minimum Principle method, which provides close-to-optimal results. The tuning mecha-
nism introduced in the previous chapter is validated for the considered drive cycles and the MPC an-
ticipation is proven useful especially due to stop-start functionality. In order to test the robustness of
the strategy, a sensitivity analysis is performed with respect to engine torque and battery state-of-charge
measurements, as well as to battery size. The evaluation is completed with an analysis of the slope in-
fluence, which is only considered for basic case studies, in the absence of slope information for standard
drive cycles.
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Chapter 1

Hybrid electric vehicles: an overview of
architecture, modeling and energy
management

This chapter is a synthesis of elementary notions and concepts related to hybrid
electric vehicles that will facilitate the comprehension of the goals of the present thesis.
A brief description and modeling are given for the main components of a hybrid power-
train. An introduction to the energy management problem is also included.

Ce chapitre est une synthèse des notions et concepts élémentaires liés aux véhicules
hybrides, qui vont faciliter la compréhension des objectifs de cette thèse. Une courte
description, ainsi que la modélisation sont présentées pour les principales composantes
d’un groupe moto-propulseur hybride. Une introduction de la gestion d’énergie est
également inclue.

1 System description

Definitions of hybrid electric vehicles (HEV) are not always unitary, but it is commonly stated that
they are characterized by an internal combustion engine (ICE) and one or more electric machines (EM),
powered by a battery or ultra-capacitor [34], see Fig. 1.1 for an example. Vehicles powered by a battery
and a fuel cell are referred to as fuel cell electric vehicle (FCEV).

The functionalities rendered possible by hybridization are the following, numbered from 1 to 4:

1. stop-start (S&S): automatically stop the engine when the vehicle is at standstill and restart it when
the gas pedal is pressed

2. regenerative braking: to slow down the vehicle, instead of dissipating the energy as heat, it is
recovered by the EM, which functions as a generator, to replenish the storage element (battery or
ultra-capacitor)

3. torque assist: in some cases, especially for aggressive drivers, the engine cannot provide the re-
quested torque and therefore, the EM contribution is used to satisfy the driver request
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Fig. 1.1 – Hybrid electric vehicle representation [1]

4. electric drive: the entire power demand is ensured by the electric path. This is only possible for
architectures that allow the engine and the traction motor to be decoupled

HEV classification in micro, mild, full and plug-in hybrid, is usually done in relation to these func-
tionalities, that imply certain power and voltage requirements, as detailed in Table 1.1. The hybridization
factor (HF ), defined as

HF =
PEM

PICE + PEM

can also be used as an indicator of hybridization category [35]. It can vary between 0 (conventional
vehicle) and 1 (all-electric vehicle). An intermediate category of medium hybrid can also be defined,
as in [36], for a voltage level of ∼144V. In [37] a distinction is made between S&S-only architecture
(referred to as micro hybrid) and soft or micro-mild, which exhibits in addition a modest energy recovery
possibility. Therefore, another classification is possible, as presented in Table 1.2, with information
regarding the type of electric machine connection and the potential fuel consumption gain.

1.1 Main components

As already mentioned, in addition to the elements of a conventional vehicle, HEV contain one or
more electric machines, an energy storage element and power electronic components. The engine can
be spark ignited (SI) or compression ignited (CI), naturally aspired or turbocharged. The electric motors
present in an HEV can be of different types, their selection depending on cost, design constraints (weight,
size) and performance objectives: brushless direct current, switch reluctance or asynchronous machines.
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Table 1.1 – HEV classification and characterization, according to [38]

`````````````̀Characteristics
Hybrid

Micro Mild Full Plug-in

Functionalities (1)+(2) (minimal) (1)+(2)+(3) (1)+ (2)+ (3)+(4) (1)+ (2)+ (3)+(4)+plug-in
Electric power (kW) 3 10-30 60 60
System voltage (V) 14 48-200 300-600 300-600

HF < 0.1 < 0.25 (0.25; 0.5) > 0.5

Table 1.2 – HEV classification and characterization, according to [37]

`````````````̀Characteristics
Hybrid

Micro Soft Mild Full Plug-in

Electric power (kW) 2-4 4-6 10-20 20-60 40-110
System voltage (V) 14 42 100-150 200-300 200-370

Electric machine connection belt belt or integrated belt or integrated integrated integrated
Consumption gain [%] 5-7 7-12 15-25 25-40 40-60

The energy storage component is among the most important elements in a hybrid powertrain. A
possible option is the ultra-capacitor, whose main advantage is the high charge and discharge rate, but it
exhibits an important self-discharge rate and a low energy density. Batteries are the usual choice and the
main requirements related to their performance are a high energy density and a long calendar life. Dif-
ferent types of batteries can be encountered for vehicle applications: valve-regulated lead acid (VRLA),
nickel-cadmium (NiCd), nickel-zinc (NiZn), nickel-metal hydride (NiMH), lithium metal-polymer (LiM-
polymer) and lithium-ion (Li-ion) [39]; a comparison between them in terms of specific energy density
and volumetric energy density is depicted in Fig. 1.2. Due to their extensive usage, a brief presentation
of NiMH and Li-ion batteries is next introduced. However, the model and the control strategy that will
be introduced in the next chapters do not depend on the battery type.

NiMH batteries are the most popular energy storage elements for HEV. It was only in 2010 that
Li-ion batteries entered the HEV market, with Mercedes S400 hybrid. However, their wide operating
range 10%-100% [39], as well as the high energy density and fast charging ability [40] makes them an
attractive choice for plug-in HEV (PHEV), such as Toyota Prius Plug-in, GM Chevrolet Volt, Hyundai
Sonata.

The main drawbacks for NiMH battery are the elevated self-discharge (for higher voltage systems
is at 30% per month, at 20◦C) and the poor performance at low temperature [39]. Conversely, Li-ion
batteries exhibit at least 20% lower self-discharge, a reduced weight (gain of∼30% for the same energy)
[39] and also a temperature range from -20◦C to 60◦C.

In [39], chapter 10, a comparison between NiMH and Li-ion batteries is presented, as a result of the
test drives performed by Nissan on two HEVs with identical characteristics, except the battery pack. It
was observed that the average delivered power was almost the same, but with a higher energy efficiency
for Li-ion (95% vs 83%) and also, a lower temperature for it (49◦C vs 52◦C). The SOC variation was
slightly larger for Li-ion ([30%-85%] vs [40%-80%]), but the most notable difference was related to the
activation of the battery management system to limit the battery discharge power, where Li-ion showed
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Fig. 1.2 – Specific energy density and volumetric energy density for different battery technologies [2]

a far better performance: 2.2% vs 44% (the numbers represent the percentage of time when the system
had to be activated).

Another comparison between these two technologies can be found in [41], for Toyota HEV (NiMH)
and GM HEV (Li-ion). The latter definitely outperforms the former in the case of specific energy: 56
vs 46 [Wh/kg] and specific output power 3000 vs 1300 [W/kg]. However, Li-ion batteries need a more
complex cooling system in order to extend their lifetime, which introduces an additional weight in the
system. After taking it into account, the NiMH battery may have a greater system-level specific energy.
Another drawback of Li-ion batteries is that they need a battery management system at the cell level,
rather than system level, as is the case for NiMH. It is also stated that for regenerative braking, a scaling
factor (around 3) is applied to the specific output power for Li-ion, in order to avoid overheating, which
reduces the differences between the performance of the two battery types.

1.2 Architecture types

There are 3 main architecture types that can be identified for an HEV, as depicted in Fig. 1.3, in a
schematic manner: parallel, series and series-parallel. Examples from the market with their associated
degree of hybridization are summarized in Table 1.3.

In parallel architectures, both the combustion engine and the electric machine can be used indepen-
dently or together for traction. The ICE and EM speed are directly determined from the vehicle speed,
the axle ratio and the gear engaged. Usually there is only one EM, but it is possible to imagine differ-
ent configurations. The EMs can be found at different levels, their position being mostly dictated by
packaging constraints (the occupied volume) and the hybridization degree.

The advantages of this architecture come from a good energetic efficiency, limited modifications
with respect to a conventional architecture, a limited number of components, whereas the disadvantages
concern reduced possibilities of downsizing, complex mechanical coupling and components placement,
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1 System description

Fig. 1.3 – Block representation of HEV architectures; CONV - convertor, BAT - battery, Trans - trans-
mission; black lines: mechanical links, green lines: electrical links [3]

Table 1.3 – Examples of HEV, classified w.r.t. architecture and degree of hybridization

hhhhhhhhhhhhhhhhhHybridization level
Configuration

Parallel Series Series-parallel

Micro Citroen C3 - -
Mild Honda Civic - -
Full Kia Optima Hybrid Nissan e-Power Ford Fusion Hybrid

Plug-in Hyundai Sonata Plug-in GM Chevy Volt Prius Plug-in

engine dynamical transient behavior not entirely eliminated [37].
Series architectures on the other hand, contain at least two electric machines: one that is used for

traction (EM1) and another that acts as a generator (EM2). The engine mechanical output is converted
into electricity by the generator, which can be used directly by the traction motor or to charge the bat-
tery. The successive energy conversions, mechanical-electrical-mechanical, explains the choice of the
architecture name. There is no mechanical link between the engine and the wheels, which presents the
advantage of choosing the engine operating point, but also the reduction of the engine dynamics, as well
as an important downsizing. The placement of components is easier than for a parallel configuration and
the main applications are for heavy duty and public transportation.

The drawbacks are related to the reduced energetic efficiency (as a result of the double electric
path), elevated cost and weight due to the presence of two electric machines, the need of important
modifications with respect to a conventional architecture, as well as the absence of a pure ICE mode
[37].
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For series-parallel architectures two categories can be distinguished:

- architectures with multiple clutches that allow the switch between series and parallel mode, justi-
fying thus the combined name of series-parallel. They contain at least two EMs and they integrate
advantages from both configurations

- architectures based on planetary gear sets (PGS), which allow a continuous power distribution
between the components, leading to the name of power split architectures. The speed of an EM is
an additional degree of freedom and they allow different interconnections between the components.

A planetary gear set (PGS) is a mechanical transmission element that possesses two degrees of free-
dom: it couples 3 shafts with different rotational speeds, with the speed of one shaft being determined
from the others. A particular case of PGS is the axle differential, located between the two driving wheels
of a vehicle [37]. Its components are called ring (R), carrier (C) and sun (S), as depicted in Fig. 1.4.
The components of a hybrid powertrain can be connected in different manners to a PGS and multiple
clutches can also be present in order to have several functioning modes, the switch being performed, for
instance, with respect to the power request level. Among the most popular PGS-based architectures are
Toyota Prius (1 PGS) and Lexus (2 PGS), whose schematic representations are depicted in Fig. 1.5.

Fig. 1.4 – Planetary gearset (PGS) representation

Fig. 1.5 – Examples of PGS-based hybrid architectures

2 Market trend, legislation and performance evaluation

Oil price increase and climate changes led to an adaptation of the automotive market trend, which
gradually started to encourage the orientation toward alternative transportation systems. This is also
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Fig. 1.6 – Evolution in time of CO2 reduction requirements for passenger car standards, in different
countries [4]

supported by a new legislation that enforces a CO2 reduction target, more stringent with every year,
but with a rate of change dependent on the country, as shown in Fig. 1.6. As far as the pollutant
emissions (HC, CO, NOx) are concerned, the situation is similar. The US passed a legislation on
vehicle emissions in the 1960s, mostly due to the increased level of smog and in 1975, as a response to
the rising oil price, norms on vehicle economy (Corporate Average Fuel Economy, CAFE) were adopted
[42]. In Europe, the first norms emerged almost 20 years later, in 1992 with Euro 1, subject to changes
over the years that eventually lead to Euro 6 in 2014, currently in use; a synthesis of this evolution is
given in Table 1.4, for compression ignition and positive ignition engines. Because of their harmful
effects on health, NOx and particulate matter (otherwise known as soot) witnessed the most restrictive
evolution: a tenfold reduction of their admissible thresholds in 14 years, from 2000 to 2014, for Diesel
engines and threefold for gasoline engines (for NOx emissions), whilst the norms on particulate matter
are only enforced since 2009. It should be noted that for the PM, in addition to the standards expressed
in [g/km], norms quantified in number of particles are also enforced.
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Table 1.4 – Emissions norms in Europe (g/km) for passenger cars; PM - particulate matter [42]

Stage Year
Compression ignition (Diesel) Positive ignition (gasoline, natural gas etc)

CO NOx PM CO HC NOx PM
Euro 1 1992 1 - 0.14 2.2 - - -
Euro 2 1996 0.64 - 0.1 2.3 0.2 - -
Euro 3 2000 0.5 0.5 0.05 1 0.1 0.15 -
Euro 4 2005 0.5 0.25 0.025 1 0.1 0.08 -
Euro 5 2009 0.5 0.18 0.005 1 0.1 0.06 0.005
Euro 6 2014 0.5 0.08 0.005 1 0.1 0.06 0.005

To evaluate the conformity with the norms, driving scenarios that represent different types of driving
conditions (urban, road, highway, jam) or driving styles (standard, eco, dynamic) need to be defined
for each class of vehicles (passengers cars, trucks). They are referred to as standard drive cycles, but
the standardization is only local, due to the differences related to legislation, as well as driving style.
For Europe, the standard is NEDC (New European Driving Cycle), depicted in Fig. 1.7, with a urban
sequence of 200s repeated 4 times and an extra-urban part, with a maximum speed of 120 km/h. The
cycle being often considered unrepresentative, alternative profiles that reproduce the urban, road and
highway trips, as well as congested urban traffic, were later proposed: the Artemis drive cycles [43],
presented in Fig. 1.8 and Traffic Jam, in Fig. 1.7, bottom. For the US, the standard drive cycle is FTP-75
(Federal Test Procedure, Fig. 1.7), which is mainly defined by urban driving and it presents a 6-minute
standstill phase, used for thermal analysis.

More recently, an attempt to converge toward a unified standard is through WLTC (Worldwide har-
monized Light vehicles Test Cycles, Fig. 1.7), which contains 4 main speed phases: low, medium,
high and extra-high. Its advantages over NEDC come mainly from stronger speed variations and lower
repetitiveness, making it more realistic. However, NEDC remains currently the standard drive cycle in
Europe.

The potential of an HEV is especially visible in urban driving, characterized by low power demands
and frequent stops and where the electric path can therefore bring an important contribution. For highway
profiles, the hybridization can be useful for boost, but the fuel reduction is insignificant. Therefore, drive
cycles such as Artemis road and highway are not very profitable for an HEV fuel gain evaluation.

It must be noted that in addition to the norms, there are also performance indicators related to NVH
(Noise, Vibration and Harmonics) and drivability, (e.g. take-off, acceleration feeling from 0 to 100 km/h)
or to the total cost of ownership (cost of acquisition and of maintenance), which are not standardized.

The previous analysis does not include the upstream process of fuel production, transportation and
distribution, nor the production of electricity, its purpose being to evaluate only the vehicle performance.
This framework is referred to as tank-to-wheel analysis and it considers only the fuel combustion, evap-
oration, tire and brake wear [39], as well as the battery consumption, for an HEV. The environmental
impact of alternative vehicles cannot be nonetheless neglected and the inclusion of the production and
transportation of the energy would complete their performance evaluation. In this case, the framework is
referred to as well-to-wheel.

Its dependence on the power generation regulations of each country led to geo-politically oriented
studies: a detailed report for European Union on well-to-wheel analysis for conventional and alternative
fuels, in conjunction with primary energy sources (natural gas, biomass, wind) can be found in [44]; for
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Fig. 1.7 – Speed profile for NEDC, FTP-75, WLTC and Traffic Jam

the US, Argonne National Laboratory conducted a research project on different vehicle technologies (SI,
CI engines, BEV and FCV), fuels (gasoline, ethanol, hydrogen) and feedstocks (corn, biomass, natural
gas, electricity) [45]; for China, in [46] an evaluation for pure electric and hybrid electric vehicles, with
detailed emission factors was presented; for Japan, [47] analyses theCO2 impact of pure electric vehicles
(EV), HEV and PHEV in order to foresee the market share of these vehicle types.

For a PHEV, a fair analysis would be in a well-to-wheel framework, in order to correctly address the
battery charging from the grid. However, for vehicle-oriented control applications, the focus is only on
tank-to-wheel evaluation, for conventional, as well as for hybrid vehicles.

3 Quasi-static modeling

The powertrain modeling for simulation distinguishes two approaches: forward and backward. The
first approach respects the physical causality of the power flow (from engine to vehicle speed), whereas
the second starts from the target drive cycle (vehicle speed and road slope, when available) and it cal-
culates the references for the propulsion system. A comparison between the two can be found in [48].
The backward approach is retained in control-oriented applications, i.e. it is assumed that there is an
imposed drive cycle and a control law for the components needs to be designed in order to ensure the
speed tracking. A schematic representation is given by Fig. 1.9.
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Fig. 1.8 – Speed profile for Artemis urban, road and highway

Fig. 1.9 – Backward simulation; v - vehicle speed setpoint, a - acceleration, Tw - wheel torque, ωw -
wheel rotational speed

3.1 Vehicle longitudinal dynamics

Vehicle propulsion implies a torque supply that overcomes the resistive forces given by aerodynamic
drag Faero, rolling friction losses Froll, force induced by gravity Fg and inertia Fi. In a backward
approach, at each instant, given the vehicle reference speed v, the road slope and vehicle parameters, the
traction force can be calculated as follows:
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Ft = Faero + Froll + Fg + Fi

Faero =
1

2
ρairAfcdv

2

Froll = (cr1v + cr0)mvgcos(α)

Fg = mvgsin(α)

Fi = mvv̇

(1.1)

The wheel torque demand can be thus determined, where Rw is the wheel radius:

Tw = FtRw (1.2)

where ρair is the air density, mv - vehicle mass, Af - vehicle frontal area, cd - aerodynamic drag coeffi-
cient, cr0, cr1 - rolling friction coefficients and α is the road grade.

3.2 Powertrain

3.2.1 Gearbox

If losses are neglected, the dependence between the input and output for a discrete gearbox (see Fig.
1.10) is expressed as:

ωi = RGBωo, Ti =
To
RGB

(1.3)

where RGB is the ratio of the engaged gear. This variable can also have continuous values, as in con-
tinuously variable transmissions (CVT). For this type of transmission the losses are not negligible and
therefore, the above torque expression is written as:

Ti =
To
RGB

η
−sign(To)
GB (1.4)

where ηGB is the gearbox efficiency.

Fig. 1.10 – Gearbox quasi-static representation; i - input, o - output

For a PGS (see Fig. 1.4) the relation between the speeds of the 3 elements (ring, carrier, sun) is
expressed as:

ωSNS + ωRNR = ωC(NR +NS) (1.5)

where NS , NR are the number of teeth of the sun and the ring, respectively.
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3.2.2 Internal combustion engine

The engine is characterized by fast dynamics, which cannot be captured by a supervisory controller
that handles only the torque and the speed setpoints. Therefore, at this level, a static model is representa-
tive enough for an engine, regardless of its characteristics (SI, CI, with direct or port injection, naturally
aspired or turbocharged, with exhaust gas recirculation etc). An ICE is usually described by its fuel rate
evolution ṁf , which is generally expressed as a nonlinear map, dependent on the torque TICE and speed
ωICE and whose usual unit is

[g
s

]
:

ṁf = f(TICE , ωICE) (1.6)

Another useful quantity for an upper-level description of an engine is the specific fuel consumption
(SFC), which evaluates the engine performance and it is defined as the ratio between the fuel rate and
the power output P [49]:

SFC =
ṁf

P
(1.7)

The most common unit is
[ g
kWh

]
; low values are an indicator of a good efficiency and they are different

for SI or CI. The iso-SFC map for a SI engine are depicted in Fig. 1.11, along with the maximum engine
torque TmaxICE curve, which is usually given as a nonlinear map in engine speed (the minimum torque is
considered zero):

TICE ∈ [0;TmaxICE (ωICE)]
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Fig. 1.11 – Iso-specific fuel consumption map for a spark-ignition engine

3.2.3 Electric motor

The electric machine has two functional modes: motor, defined by a positive torque and generator,
with a negative torque, both with a upper and lower bound, respectively, dependent on the EM speed:
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TEM ∈ [TminEM (ωEM ) , TmaxEM (ωEM )]

An example of this dependence for an EM can be seen in Fig. 1.12, along with the iso-efficiency map.
The output power is either given as a static map, as a function of torque TEM and speed ωEM , or

directly expressed from torque and speed, with losses given as a map:

PEM =
π

30
ωEMTEM + loss (ωEM , TEM ) (1.8)
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Fig. 1.12 – Iso-efficiency map for an electric machine, with its torque limits

3.3 Energy storage elements

Batteries are the most encountered energy storage elements for HEV and therefore, in what follows,
the modeling will be exclusively addressed for them. For ultra-capacitors, a basic physical model can be
found in [3].

For supervisory control application, a simple equivalent circuit with internal resistance is usually
used for batteries [3], as depicted in Fig. 1.13. More complicated equivalent circuit models that capture
the thermodynamical behavior can be found in [41] or [50]. The open circuit voltage OCV and the
internal resistance R depend on SOC, their evolution with respect to SOC being depicted in Fig. 1.14 for
a Li-ion battery. Note that R has a different evolution for charge and discharge.

The most important variable that describe the battery dynamics is the state-of-charge, defined as:

SOC(t) = SOC(t0)− 1

Qmax

∫ t

t0

Ibat(τ)dτ (1.9)

The battery current can be deduced from Kirchhoff’s law applied to the equivalent circuit from Fig.
1.13: OCV − IbatR = Ubat. By multiplying it with Ibat and given that IbatUbat = Pbat is the power

Page 23



Chapter 1. Hybrid electric vehicles: an overview of architecture, modeling and energy management

Fig. 1.13 – Equivalent internal resistance circuit for batteries; OCV - open circuit voltage; R - internal
resistance
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Fig. 1.14 – Open circuit voltage and internal resistance evolution with respect to SOC for a typical Li-ion
battery

exchanged between the battery and the electric machine, this yields to the solution of a second order
equation:

Ibat =
OCV −

√
OCV 2 − 4RPbat

2R
(1.10)

where Pbat = π
30ωEMTEM + loss (ωEM , TEM ) . It should be noted that only one solution was retained,

since the battery current can be positive (discharge, Pbat > 0) or negative (discharge, Pbat < 0), the
other solution of this second order equation being always positive.

The variation of SOC can therefore be expressed as:

˙SOC = −
OCV (SOC)−

√
OCV (SOC)2 − 4R (SOC)Pbat

2R (SOC)Qmax
(1.11)

where the SOC dependence of OCV and R was explicitly marked.
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4 Energy management

In addition to SOC, another variable that characterizes the battery, is the state-of-health (SOH), which
quantifies the battery wear-out. There are three main types of SOH models [13]: electrochemical, event-
based and energy-throughput-based models. The latter is suitable for real-time control problems due to
its simplicity and it takes into account the number of cycles of charge/discharge:

˙SOH(t) = − |Ibat(t)|
2NQmax

(1.12)

where N is the number of total number of cycles until the end-of-life, which is defined as the loss of
20% of the rated capacity.

4 Energy management

For a hybrid vehicle, three main optimization layers can be identified in the literature:

1. Architecture optimization: it concerns the components position and their interconnection [51],
[52]

2. Optimal sizing: engine displacement, electric machine power, battery capacity. This can be indi-
vidually handled, at an upper layer, [53] or with energy management co-optimization [54], [55]

3. Optimization-based control algorithms, which include the energy management

The presence of an additional energy source introduces a new degree of freedom within the control
design algorithms for a hybrid architecture. One of the challenges that arise is the management of this
source such that the vehicle performance is improved. The power distribution between the two sources
is referred to as energy management and it will represent the major topic of this thesis. In most of the
cases, this problem is formulated for a fixed architecture and sizing, but as mentioned above, an energy
management and sizing co-optimization can also be encountered.

The scientific literature is abundant in publications that handle the energy management and its field
extended, especially in recent years, by covering adjacent problems. Several criteria can be employed to
classify the current research work. The uppermost criterion is related to the hybridization type, followed
by vehicle type (passenger, trucks, buses or even race cars) and configuration type, which includes the 3
types presented in the beginning of this section, with a distinguished category for the plug-in case, as it
is summarized in Table 1.5:

Table 1.5 – Classification of energy management applications w.r.t. overview criteria: hybridization,
configuration and vehicle type

Hybridization type Vehicle type Configuration (HEV)
electric: most common passenger car: most common parallel [25], [56], [15], [57]

hydraulic [58] truck [59], [60], [61] series [62], [63], [64]
pneumatic [65], [66] bus [67], [68], [69], [70], [71] series-parallel [72], [73], [74], [75]
fuel cell [76], [77] race car [78], [79], [80] PHEV [81], [82], [83]

If the engine speed is not included in the optimization, the problem is reduced to torque distribution
and this is the particular framework for parallel hybrid architectures. Series architectures and those based
on PGS include by default the engine speed as an optimization variable, as showed in the first subsection.
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For an HEV, the energy management targets especially the reduction of CO2 emissions, which is
primarily handled by the torque distribution, with a possible extension to gearshift optimization, as in
[84], [30] or even velocity profile co-optimization, as in [32], [33], [85], [22]. Vehicle speed can therefore
represent a new degree of freedom in the optimization, in addition to the engine torque and speed.

Fuel consumption reduction is the primary objective, but it is not unique, multi-objective optimiza-
tions being equally used to address:

- drivability: the objective can be to simultaneously minimize the fuel consumption and the num-
ber of gearshifts and engine events (stop-start) [10], [86]; drivability problem handles the power
fluctuations absorption [87]

- reduction of pollutant emissions: the state space is extended with the catalytic converter tempera-
ture [11]; the objective is expressed as a trade-off between the fuel consumption and the emissions
[12], [88]

- duration improvement (battery health): battery state-of-health is explicitly considered and defined
with respect to number of cycles of discharge and charge [13]; battery cell temperature is intro-
duced as an additional state [14]

- driver’s thermal comfort: depending on the climate conditions, the impact of cabin heating on fuel
consumption cannot be neglected [89]

In some cases, maximizing the efficiency is the main objective, as in [90], where an extremum
seeking method was used for a parallel architecture or as in [63], where a model predictive control-based
energy management was applied to a series architecture. For the latter, this approach is mainly due to
the particularities of the configuration: choice of the engine operating point regardless of the vehicle
speed and poor efficiency of the double electrical path. However, an efficiency-oriented objective does
not necessarily yield optimal fuel gain results.

The type of algorithm used by the strategy determines different possible classifications. One of the
most encountered distinctions is between rule-based and model-based strategies. The former are based
on a heuristic description of the system and their simplicity makes them an attractive option for real-time
algorithms. They can be implemented as a set of if - then - else rules (as a finite state machine, for
instance) and they further distinguish the following modes:

- electric traction for low speeds (if the battery allows it)

- regenerative braking

- electric assistance when the power demand cannot be provided by the engine

- exclusive ICE traction for low battery levels or low electric efficiency

- hybrid mode with best combined efficiency [8], [9].

For some specific architectures, such as torque-assist hybrids, where the EM and ICE are always
coupled, a simplified rule-based strategy is proposed; the EM interferes only for launch from standstill,
braking energy recovery and boost [91].

The main drawback of this method is the lack of portability, the set of rules being only valid for a
certain application. Moreover, the threshold values used to switch between the modes strongly depend on
the powertrain configuration and on drive cycle characteristics, which makes their tuning a complicated
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process. An improvement can be obtained by using an alternative heuristic method, a Fuzzy Logic
Controller (FLC) [92], [93]. A detailed description of this method, with its variations (predictive and
adaptive) can be found in [94].

The model-based methods can provide the global optimum, but with a limited use to an offline
application, or the local optimum, with a possible real-time implementation. The former is only used as
a reference in order to evaluate the performance of real-time strategies. Since the focus of this work is
model-based control, more details about these methods will be provided in Chapter 3.

Sometimes, heuristic strategies are used in conjunction with optimization-based methods, i.e. the
former are defined such as they reflect the behavior of the latter [95] or the results of the optimization
strategy is exploited in defining the aforementioned threshold values for mode switching [96]. More
recently, meta-heuristic methods can also be encountered [97] or game theory [98], where the two power
sources are seen as non-cooperative players. These strategies are however more popular when the opti-
mization of the components size is included, the problem becoming a multi-objective optimization [99],
[100].

Another common distinction is made between causal and non-causal methods. As the name indicates,
a causal strategy relies only on current information, such as the instantaneous power demand and the
current vehicle speed and, if necessary, past information, whereas a non-causal method uses predictive
information, obtained in different ways:

- directly from navigation system [18] (speed limits, traffic signs and density) or GPS [19]

- constructed from the position of the lead vehicle [22] without the possibility of overtaking [17] or
with this possibility [32]

- generated by a prediction model (Markov chain [101], neural networks, exponentially varying
predictors; a comparison between these 3 techniques can be found in [102])

- combinations: road grade and speed limits modeled as a Markov chain, but traveling direction
given by GPS and road profile by GIS [103]

The work done in the present thesis considers passenger cars, for a fixed architecture, with a focus
on parallel configuration and the main goal is the fuel consumption reduction. A predictive model-based
strategy is chosen, with real-time implementation potential. Traffic prediction is not explicitly handled,
the preview information is considered available from navigation data.

5 Conclusions

This chapter presented a basic description of HEV i.e. main components and architecture types, as
well as notions about the performance evaluation. The quasi-static modeling was also addressed, which is
necessary to the understanding of the control-oriented model that will be next introduced. For the energy
management problem, only an overview presentation was provided, which allowed the distinction of
different optimization layers, control objectives, degrees of freedom and control algorithms. More details
about predictive energy management will be included in Chapter 3.
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Chapter 1. Hybrid electric vehicles: an overview of architecture, modeling and energy management

Ce chapitre a présenté une description basique des véhicules hybrides i.e. les éléments principaux et
les types d’architecture, ainsi que des notions sur l’évaluation de la performance. La modélisation quasi-
statique a également été traitée, étant nécessaire pour la compréhension du modèle orienté contrôle qui
sera présenté par la suite. Pour le problème de la gestion d’énergie, seulement une présentation générale
a été fournie, qui a permis la distinction entre les différents couches d’optimisation, les objectives du
contrôle, les dégrées de liberté et les algorithmes du contrôle. Plusieurs détails sur la gestion d’énergie
prédictive seront inclus dans le troisième chapitre.
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Chapter 2

Generic powertrain control-oriented
model

Model-based control strategies have the advantage of handling multiple configura-
tions for a given system, by means of parametrization. For an HEV, the energy manage-
ment controller is often restricted to a specific architecture, i.e. for a certain transmis-
sion type and electric machine(s) position. The most encountered distinction is made
with respect to the three hybrid architectures: series, parallel and series-parallel. This
is mainly due to the differences concerning the degrees of freedom, but also to the physi-
cal features of each architecture that favor certain control strategies. Although a unified
energy management approach can be hardly envisioned, a generic powertrain control-
oriented model would offer a compact description that could be easily exploited by a
model-based controller and its construction is the main objective of the present chapter.

The uppermost level provides an overview of the system’s structure, whereas inter-
mediate levels complete the description based on physical relationships. For a hybrid
powertrain, the wheel torque includes information about the transmission, engine type
and the electric machines positions, but also about exogenous inputs, such as slope.
In our approach, under mild assumptions, general static expressions for the torque at
different levels (wheel, gearbox, crankshaft) and for the speed of components are intro-
duced. The proposed model is detailed for a parallel architecture, with the inclusion of
the dual clutch transmission case, which is often neglected in the literature. The pres-
ence of two clutches in the powertrain model allows extensions for series and series-
parallel architectures, except the cases with multi-mode configurations. These systems
contain more than 2 clutches that allow different interconnections and therefore more
flexibility. For their modeling, additional degrees of freedom are necessary and here, the
adjustments are presented only for a range of encountered case-studies.

The fuel rate is usually provided as a lookup table of engine speed and torque, while
for a model-based approach, an analytical expression is needed. A physical model be-
ing unnecessarily complex for a supervisory control, an approximation of the fuel map
is instead used. In the literature, various consumption models can be encountered and
Willans line emerges as a unified approach. However, it fails to cover all the operating
range, especially for turbocharged SI engines. Here, a PWL approximation in torque is
proposed, that can be applied to all engine types, for an appropriated partitioning.
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Chapter 2. Generic powertrain control-oriented model

Les stratégies de contrôle basées sur des modèles présentent l’avantage de gérer de
configurations multiples pour un système donné, à travers une paramétrisation. Pour
un véhicule hybride, la gestion d’énergie est souvent réduite à une architecture spéci-
fique, pour un certain type de transmission et pour une position de la machine élec-
trique. La plus répandue distinction se fait par rapport aux trois architectures hybrides:
série, parallèle et série-parallèle. Ceci est notamment dû aux différences concernant
les dégrées de liberté, mais aussi aux caractéristiques physiques de chaque architecture
qui favorisent certaines stratégies de contrôle. Une approche unifiée pour la gestion
d’énergie serait difficilement envisageable, mais un modèle générique, orienté contrôle
pour le groupe moto-propulseur (GMP) offrirait une description compacte, qui pour-
rait facilement être exploitée par un contrôleur model-based et sa construction sera
l’objectif principal de ce chapitre.

Le niveau supérieur offre une vision générale sur la structure du système, alors que
des niveaux intermédiaires complètent la description basée sur des relations physiques.
Pour un GMP hybride, le couple à la roue inclut des informations sur la transmission,
le type du moteur et les positions des machines électriques, ainsi que sur des entrées ex-
ogènes, comme la pente. Dans notre approche, sous certaines hypothèses, des relations
statiques générales pour le couple à des différents niveaux (roue, boîte, vilebrequin)
et pour la vitesses des composantes sont introduites. Le modèle proposé est détaillé
pour une architecture parallèle, avec l’inclusion de la transmission double embrayage,
souvent négligée dans la littérature. La présence de deux embrayages dans la mod-
èle permet des extensions pour les architectures série et série-parallèle, à l’exception
des configurations multi-modes. Ces systèmes contiennent plus de deux embrayages qui
permettent de différentes interconnections et par conséquent, plus de flexibilité. Pour
leur modélisation, des dégrées de liberté supplémentaires sont nécessaires et dans ces
travaux, des ajustements sont introduites seulement pour des études de cas présentes sur
le marché.

La consommation de carburant est généralement fournie comme une cartographie
en couple moteur et régime, mais pour une approche à la base de modèle une expression
analytique est nécessaire. Un modèle physique étant inutilement complexe pour un con-
trôle au niveau superviseur, une approximation de la cartographie de consommation est
en revanche utilisée. Dans la littérature, on peut rencontrer différents modèles de con-
sommation et la courbe de Willans émerge comme une approche unifiée. Cependant, elle
ne couvre pas toute la plage de fonctionnement, en particulier pour les moteurs essence
turbo-chargés. Dans cette thèse, une approximation linéaire par morceaux en couple
est proposée, qui peut être appliquée sur tous les types de moteurs, pour une partition
appropriée.

Page 30



1 State-of-the-art

1 State-of-the-art

As mentioned in the introduction, the energy management of HEV handles the power distribution
between two propulsion elements. When the rotational speed is pre-imposed, either by the drive cycle
standards, or calculated at a supervisory level, the problem is reduced to torque split. Therefore, at each
sampling time, the wheel torque demand is calculated from the target speed, resistive forces and slope,
and then, a controller decides the distribution of torque between the engine and the electric machine. The
level where the repartition occurs is defined by the position of the electric machine (crankshaft, gearbox
or wheel) and hence, from a control perspective it is useful to propose a model that covers a large class
of configurations.

The first attempt toward a generalized model for an HEV powertrain is encountered in [27], where
an approach based on energy flow was proposed. The components are classified into energy converters,
energy transformers and energy storage elements. Scalability and composability are the main targeted
properties of the model. The former allows an unique representation of elements that belong to the same
class (ICE and EM, for instance), such that only a scaling or displacement factor needs to be defined
for each element. The second property facilitates the generation of different systems, under acceptable
topological rules. The generation of topologies can also be encountered in a recent publication [51],
where a platform-based design under functional and cost constraints is used.

In [28] a more detailed energy-based approach was introduced: energetic macroscopic representation
(EMR), that can represent different vehicle types: conventional, electric and hybrid. Unlike the afore-
mentioned publication, the interconnection of the components is explicitly handled here. The engine
and the electric machines are not characterized only by their losses and their admissible lower and up-
per torque, but also by their dynamic torque-speed relation. For a hybrid vehicle, the three architecture
types are handled: series, parallel and series-parallel. Since the type of transmission and the position of
the electric machine are not explicitly considered for a parallel configuration, the present study aims to
extend this work by including them in the modeling.

Power-split architectures have witnessed a more elaborate modeling and topology-oriented work, as
a result of their complexity, as witnessed by Toyota Prius success. Among the first publications which
addressed this topic is [104], where an algorithm of automatic generation of mathematical models for
power-split HEV with 2 planetary gear sets was proposed, with a possible utilization for sizing based
on optimization. A later attempt was [105], where the bond graph method 1 was used for steady-state
modeling of the most common power-split architectures, single and two-mode, likewise. The same
approach was later extended to include shaft inertias and a clutch friction model [107].

Multi-mode configurations enjoyed a more detailed analysis in [108], where the possibility of clutches
installation and their impact on fuel consumption was addressed. The case studies were fictitious ar-
chitectures based on Toyota Prius and Chevrolet Volt, obtained by adding or removing clutches. The
architectures considered here contain only one planetary gear set, but in [109] the multi-mode, multi-
planetary gear set configurations were handled. More recent publications [52], [110] combine modeling
and design optimization of multi-mode configurations, the two main objectives being fuel economy and
acceleration performance.

In this chapter, a static model for torque and speed will be introduced, that can appropriately address
the functioning of a dual-clutch transmission, which is often neglected in the literature. First, a parallel
architecture is considered and subsequently it will be shown that the model allows extensions. In Chapter
4 of [3] the architectures based on planetary gear sets were treated and a very compact model was

1Bond graph is a graphical language that allows an energetic representation of dynamical systems [106]
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Chapter 2. Generic powertrain control-oriented model

proposed in the form: [
Tf
Tg

]
= MT

[
Tice
Tm

]
,

[
ωice
ωm

]
= M

[
ωf
ωg

]
, (2.1)

where f, g, m stand for final driveline, generator and motor, respectively. In what follows, it will be
shown that our proposed model integrates and extends 2.1.

Fig. 2.1 – Input-output representation of a planetary gear set, [3]

2 Model synthesis

The proposed model aims to cover a large class of HEV architectures under the following viewpoints:

i. potential EM connected to the crankshaft (crk), primary shaft (prim), secondary shaft (sec) and
to the wheel (w), as depicted in Fig. 2.3

ii. one electric storage element (battery, supercapacitor)

iii. one gear-shaft EM (an EM to the either odd or even shaft, but not both - for a dual-clutch transmis-
sion). The notation conventions will assign the shaft index 2 to the EM connected to the primary.
If the EM is connected to the odd shaft, the indexes will be switched.

iv. gear and clutch dynamics are not considered

v. gear efficiency is considered only in the case of a CVT

Fig. 2.2 depicts a generic hybrid powertrain, with all possible connections of the EM, front and
rear drive included. The EMs can be found alone or in combinations, usually by two: crk and w, crk and
prim/sec. Their position is mostly dictated by design constraints (the occupied volume) and hybridization
level; for instance, a full hybrid has an EM connected at the secondary shaft or wheel, whereas mild
hybrids use smaller EMs that can be placed at crankshaft level or primary shaft. Moreover, to improve
the performance (available power and drivability) or to respond to design constraints such as packaging,
the EMs can be simultaneously found on the front and rear drive axle (e.g. Mitsubishi Outlander PHEV).

From an energy management perspective, the compact representation in Fig. 2.3 should be preferred,
where the front drive includes all the EMs. A discrimination between front and rear drive is important
for vehicle stability, this aspect being usually handled aside the energy management. Therefore, in what
follows, the proposed model adopts the architecture from Fig. 2.3 and aims to span all its degrees of
freedom within a generic parametrization.
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2 Model synthesis

Fig. 2.2 – Generic representation of a hybrid powertrain; front and rear drive. GB - gearbox

Fig. 2.3 – Generic representation of a hybrid powertrain, compact form; Rf - axle ratio

2.1 Powertrain configuration

From Fig. 2.3 three types of configuration with respect to clutch can be extracted:

1. one-clutch (independent of the EM position), as in Fig. 2.4, top

2. no clutch (independent of the EM position), as in Fig. 2.4, bottom

3. dual-clutch (particular case for EM connected to the primary shaft, as in Fig. 2.5)

A description of these configurations is given in Table 2.1. Let ratposEM be the ratio between the EM
and the shaft position (pos).This variable takes values in a subset pos ⊆ {crk, prim, sec, w} describing
the positions of the EMs for a given hybrid architecture. Therefore, the absence of an EM to a certain
shaft pos /∈ pos is translated in mathematical terms by ratposEM = 0.

Table 2.1 – Architectures description, EM connected to pos; 0 - open clutch; 1 - closed clutch

Configuration Description

1 C1 = 0, C2 ∈ {0, 1}
2 C1 = 0, C2 = 1

3 C1, C2 ∈ {0, 1}, prim ∈ pos
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Fig. 2.4 – Configuration (1) and (2): schematic representation

Fig. 2.5 – Configuration (3): hybrid DCT with EM connected to the primary shaft

2.2 Torque and rotational speed generic expressions

From an energy management point of view, the torque expression at the wheel level includes the
complete information about a HEV architecture (EM position and gearbox). For a detailed characteriza-
tion, the model has to describe the relationship between the components torque and the torque delivered
at the 4 shafts (crk, prim, sec, w) and also the rotational speeds of the components, as functions of the
vehicle speed v and the engine idle speed ωctrlICE . The expressions (2.2)-(2.12) are written for a parallel
architecture with a dual-clutch transmission, defined by 2 shafts that contain the odd and even gear num-
bers, respectively, whose ratios are denoted as R1 and R2. As shown in Table 2.1, this configuration can
be reduced to one clutch and no clutch transmissions with a proper parameterization. In the following
sections it will be shown that the proposed model can also define series and series-parallel architectures,
under certain assumptions.
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Tw = rwICETICE +
∑
pos

r
w/pos
EM T posEM with pos ∈ {crk, prim, sec, w} (2.2)


Tcrk
Tprim
Tsec
Tw

 = AT


TICE
T crkEM

T primEM

T secEM

TwEM

 ,

ωICE
ωcrkEM
ωprimEM

ωsecEM
ωwEM

 = Aω

[
v 1
Rw

ωctrlICE

]
(2.3)

AT =


1 ratcrkEM 0 0 0

rprimICE r
prim/crk
EM ratprimEM 0 0

rsecICE r
sec/crk
EM r

sec/prim
EM ratsecEM 0

rwICE r
w/crk
EM r

w/prim
EM r

w/sec
EM ratwEM

 (2.4)

Aω =


rwICE 1− C1 −N2C2

r
w/crk
EM ratcrkEM (1− C1 −N2C2)

r
w/prim
EM ratprimEM C2 (1− C1) (1−N2)

r
w/sec
EM 0
ratwEM 0

 (2.5)

rprimICE = C1 + C2 − C1C2 (2.6)

rsecICE = R1C1 +R2C2 (2.7)

rwICE = Rf(R1)R1C1 +Rf(R2)R2C2 (2.8)

r
pos/crk
EM = rposICErat

crk
EM , pos ∈ {prim, sec, w} (2.9)

r
sec/prim
EM = (R1C1C2 +R2) ratprimEM (2.10)

r
w/prim
EM = Rf(R1C1C2+R2)r

sec/prim
EM (2.11)

r
w/sec
EM = Rf(sec)rat

sec
EM , r

w/w
EM = ratwEM (2.12)

where N2 = min(R2, 1), Rf(R1) denotes the axle ratio associated to gear with ratio R1. Usually, the
axle ratio is constant, but for dual-clutch transmissions two values might be admissible. It should be
noted that for a CVT, the above formulation no longer presents a symmetry between speed and torque
expressions due to the presence of gearbox losses, as defined in (1.4). For simplicity, the following
analysis will consider exclusively the case where the gearbox losses are negligible.

The terms in matrices AT and Aω include products between the 2 clutches in order to appropriately
integrate special use-cases of a DCT-based hybrid, where both clutches can be simultaneously closed.
For instance, (2.6) defines the ratio between the torque at primary and at crankshaft rprimICE and it is the
arithmetical expression for the logical OR operation. The binary variable N2 is introduced in order to
correctly define the case when the even shaft is on neutral, while the clutch is closed, as in Fig. 2.6 and
2.7. Relation (2.10) finds a detailed characterization in Table 2.2, which is well defined for ratprimEM 6= 0.
For a DCT, if both clutches are closed (Fig. 2.6, right) the EM will run at the same speed as the ICE, the
operating point being defined by the vehicle speed and the gear engaged on the odd shaft (R1).

The condition that ensures the engine is disconnected from the drive (its speed being therefore defined
by ωctrlICE) is C1 + N2C2 = 0. This covers the cases where both clutches are open and also the charge
at standstill mode (C1 = 0, C2 = 1, N2 = 0). The latter is defined for an architecture with one EM to
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Table 2.2 – EM to primary shaft, (2.10) description; configurations from Fig. 2.4 and 2.5

C1 C2 r
sec/prim
EM /ratprimEM Configuration

0 0 R2 1, 3
0 1 R2 1, 2, 3
1 0 R2 3
1 1 R1 3

Fig. 2.6 – DCT-based hybrid: Charge during driving, torque split and parallel mode

the primary shaft and involves decoupling the engine from the wheel (N2 = 0) and closing the clutch
between the engine and the EMprim (C2 = 1), as in Fig. 2.7. In the case of a DCT, C1 will be set to
zero, according to assumption (iii) in section 2. Thus, the EM rotational speed will be equal to ωctrlICE and
this is defined in the ωprimEM expression by the term C2 (1− C1) (1−N2).

Fig. 2.7 – DCT-based hybrid, charge at standstill

2.3 Validation on different hybrid architectures

2.3.1 Unified modeling

For a parallel architecture the component torques are independent and the rotational speeds are di-
rectly determined from the vehicle speed (exception for special cases of disconnection from the drive-
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line). For a series-parallel architecture, the torque of one EM is calculated from the torques of the other
components torque, but its speed is an additional degree of freedom, as in (2.1). Let:

MT =

[
rwICE r

w/crk
EM r

w/prim
EM r

w/sec
EM rwEM

rgICE rgcrk rgprim rgsec rgw

]

TEM =
[
T crkEM T primEM T secEM TwEM

]T
ωEM =

[
ωcrkEM ωprimEM ωsecEM ωwEM

]T
With these notations, (2.3) can be reduced to a relation similar to (2.1):[

Tw
Tg

]
= MT

[
TICE
TEM

]
;

[
ωICE
ωEM

]
= M

[ v
Rw
ωg

]
(2.13)

This compact expression eliminates the shaft torque at intermediate levels and introduces the torque
of an electric machine, needed for series and series-parallel architectures. It can be observed that for
ωg = ωctrlICE , the model describes a parallel hybrid architecture at the wheel level (Tg is not used).

An overview description of this model is given in Table 2.3 for the three hybrid architecture types.
For a parallel architecture the clutches values depend on the transmission type, as will be next introduced.
For the series case, the absence of a mechanical link between the engine and the wheels leads to C1 =
C2 = 0. The EM that acts as a generator g, is assimilated to EM crk and the ratio between the engine
and the generator rgICE is either a non-null constant or zero, if a clutch is present between the two
components. The traction EM is EMprim, which leaves the secondary shaft and the wheel without an
EM, i.e. rgsec = rgw = 0. The series-parallel architectures have more complicated configurations and the
table provides only a very brief characterization. Systems based on planetary gear sets do not contain
clutches, except for the cases with multi-mode configurations, as will be detailed in the next subsection.
Therefore, C1, C2 are not constrained and their values span all the configurations.

Table 2.3 – Application of model (2.13) for HEV architectures

Parallel Series Series-parallel
C1, C2 ∈ {0, 1} C1 = C2 = 0→ rwICE = 0 C1, C2 ∈ {0, 1}
ωg = ωctrlICE g = crk, rgcrk = 1 g = crk
Tg not used rgICE ∈ {0, const} rwICE 6= 0

M(:, 2) = Aω(:, 2) rgsec = rgw = 0 rgICE 6= 0

2.3.2 Parallel architecture

For a parallel hybrid, the model can be simplified if the powertrain configuration is fixed. The static
relations (2.3) are expressed for a DCT-based hybrid and they can be reduced to cases with one-clutch
transmissions, if parameterized accordingly. No clutch transmissions are based on planetary gear sets, as
in Fig. 1.5 and they correspond to power-split architectures, which will be next handled.

One clutch transmission configurations are characterized by the set of relations below, where only
one electric machine connected to primary shaft is considered, for a straightforward visualization:
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

C1 = 0, C2 ∈ {0, 1}
R2 − all gear ratios
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Tprim

Tsec

Tw
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1 0
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prim
EM
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TICE

T primEM

]
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]
=

[
RfR2C2 1−N2C2

RfR2r
prim
EM ratprimEM C2(1−N2)

][
v
Rw

ωctrlICE

]
(2.14)

Nissan’s one-motor, two-clutch system depicted in Fig. 2.8 and 2.9 is a parallel architecture that
contains two clutches: one wet multi-plate clutch between the EM and the gearbox (C1) and one dry
single-plate clutch between the ICE and the EM (C2). The latter allows the engine to be disconnected
from the driveline, whereas the former acts like a starting element, replacing the torque converter and
it ensures an improvement in the drivability, by stabilizing the torque during engine start operation.
Clutch C1 plays therefore an important role during transient phases, when it is slipping, which is not
covered by the proposed model, see assumption (iv). Hence, in spite of the presence of two clutches,
this configuration does not correspond to a dual-clutch transmission case, but rather to a single-clutch,
by assimilating C1 into the gearbox. If C1 = 1, then R2 from the model above takes the value of the
selected gear; if C1 = 0, then R2 = 0. Therefore, C1 from this configuration is rather the binary value
N2 = min(R2, 1) that defines whether the shaft is decoupled or not.

Fig. 2.8 – Nissan one motor, two-clutch system; parallel architecture

Fig. 2.9 – Nissan one motor, two-clutch system, schematic representation

Page 38



2 Model synthesis

2.3.3 Series architecture

The proposed model can also describe the series architecture, depicted in 2.10. In this case, the
engine is decoupled from the drivetrain and there are two EM: one for traction (B), and another that acts
as a generator (A), to convert the engine mechanical output into electricity. From Fig. 2.3 this implies
that the traction motor is EMprim and the generator- EM crk.

Fig. 2.10 – Series hybrid architecture; CONV - power converter, Trans - transmission; BAT - battery

Fig. 2.11 – Nissan e-Power Range Extender architecture

Therefore, (2.16) can be detailed as below:



C1 = C2 = 0

rgICE ∈ {0, const}
R2 − all gear ratios[

ωICE

ωM/GB

]
=

[
0 rgICE

R2rat
prim
EM ratprimEM (1−N2)

][
Rf

v
Rw

ωM/GA

] (2.15)

In a standard series architecture, N2 = 1, which cancels the term that links the traction EM speed
with the generator speed. This is also coherent with the third line from matrix Aω defined in (2.5),
because C2 is set to zero. However, in multi-mode configurations, it is not always possible to have
the two speeds decoupled, as it can be seen in Table 2.4, which defines the functional modes of GM
Range Extender powertrain, depicted in Fig. 2.12. The above formulation models this architecture for
R2 = 1 + 1

z , ratprimEM = 1 and N2 is dependent on the selected mode, N2 ∈ {1, R2}.
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Fig. 2.12 – General Motors Range Extender (GM RE) hybrid powertrain with the 2ET50 transaxle [5]

Table 2.4 – Series architecture, GM RE case study; terms from (2.16)

XXXXXXXXXXXMode
Parameters

M11 M12 M21 M22

One-Motor EV
0 0 1 + 1

z 0
C1 = 1, C2 = C3 = 0

Two-Motor EV
0 0 1 + 1

z −1
zC1 = 0, C2 = 1, C3 = 0

Series One-Motor RE
0 const 1 + 1

z 0
C1 = 1, C2 = 0, C3 = 1

Combined Two-Motor RE
0 const 1 + 1

z −1
zC1 = 0, C2 = 1, C3 = 1

2.3.4 Series-parallel architecture

For series-parallel architectures only a generic description was provided in Table 2.3. It should
be noted that such architectures exhibit an increased complexity for their transmissions, i.e. number of
planetary gear sets (PGS) and their interconnection, as well as the potential presence of different clutches
that allow a multi-mode functioning. A comprehensive description of these architectures can be found
in [109], where it was shown, for instance, that a configuration with two planetary gear sets may contain
up to 16 clutches. For a better understanding, in Fig. 2.13 three representative hybrid architectures based
on PGS are provided:

(a) General Motors 2-mode hybrid powertrain with the 2MT70 transaxle (Saturn VUE)

(b) Toyota Hybrid System, first and second generation

(c) Lexus RX450h

Let M from (2.1) be defined as M =

[
M11 M12

M21 M22

]
, ωf = Rf

v
Rw

and z = ωR−ωC
ωC−ωS = NS

NR
, where

indexes R,S,C stand for ring, carrier and sun, respectively (see Fig. 1.4) and NS , NR - number of
teeth. On each configuration, the B motor is the traction electric machine (connected to the driveshaft),
whereas the A motor acts mainly as a generator and introduces an additional degree of freedom in the
speed expressions. Relation (2.13) can then be written as:[

ωICE
ωM/GB

]
=

[
M11 M12

M21 M22

] [
Rf

v
Rw

ωM/GA

]
(2.16)

where the terms Mij are defined in Table 2.5 for power-split architectures (a), (b) and (c).
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Fig. 2.13 – Three representative PGS-based hybrid architectures [5]; diff - differential

Table 2.5 – PGS-based hybrid architectures; terms from (2.16) for architectures in Fig. 2.13; z1, z2 are
PGS ratios

`````````````̀Architecture
Parameters

M11 M12 M21 M22

(a)

Mode 1 (
1 + 1

z2

)
1

1+z1
z1

1+z1
1 + 1

z2
0

C1 = 1, C2 = 0, C3 = 1
Mode 2

0 z1
1+z1

1 + 1
z2

− 1
z2C1 = 0, C2 = 1, C3 = 0

(b) 1
1+z

z
1+z 1 0

(c)
(

1 + 1
z2

)
1

1+z1
z1

1+z1
1 + 1

z2
0

Model (2.4)-(2.12) can also be used for these series-parallel architectures with a suitable parametriza-
tion. Relation (2.4) is detailed below, where only the EM connected to the secondary shaft was kept,
which corresponds to M/G B, with the degree of freedom ωctrlice = ωM/GA, as mentioned above.[

ωICE
ωsecEM

]
=

[
R1C1 +R2C2 1− C1 −N2C2

ratsecEM 0

] [
Rf

v
Rw

ωM/GA

]
(2.17)

Configurations (b) and (c) correspond to the case with no clutch transmissions and they are well-
defined for C1 = 0, C2 = 1, N2 = R2 and ratsecEM = 1. Here C1 is not used and thus, set to zero,
whereas C2 is considered always closed and therefore, there is no need to check whether the shaft is
decoupled from the wheel or not. Note that this decoupling feature imposes the use of an additional
variable N2 = min(R2, 1), which was initially defined as a binary value. Here, a slight change is
necessary in order to relax N2 to take all the values of R2, and thus provide a proper mathematical
definition. From Table 2.5 and (2.17), for configuration (b) it can be extracted that

R2 =
1

1 + z
, 1−N2 = 1− 1

1 + z
, ratsecEM = 1 (2.18)
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Table 2.6 – PGS-based hybrid architectures; terms from (2.19)
`````````````̀Architecture

Parameters
R2 final drive ratio C3

(a) 1
1+z1

Rf

(
1 + 1

z2

)
{0,1}

(b) 1
1+z Rf 1

(c) 1
1+z1

Rf

(
1 + 1

z2

)
1

which validates the proposed parametrization. A similar relation can be written for configuration (c), but
with one particularity: the presence of a second planetary gear set is included in the axle drive ratio, as
detailed in Table 2.6.

Configuration (a) can be modeled in a similar way as (c) with an additional variable C3 introduced
in order to handle the two modes. Note also that for this case-study, C1 and C2 do no have the same
significance as in Fig. 2.3, their use being related to multi-mode functioning.

A compacted expression, based on model (2.4)-(2.12), that describes the 3 series-parallel configura-
tions, can therefore be written, with details provided by Table 2.6.[

ωICE
ωM/GB

]
=

[
C3R2 1−R2

1 −(1− C3) 1
z2

] [
Rf

v
Rw

ωM/GA

]
(2.19)

2.4 Fuel consumption approximation

As announced in the first chapter, the ultimate goal of the present thesis is to optimize the fuel gain
for an HEV. Therefore, a consumption model is necessary and will be next introduced. Its development
is based on the engine fuel consumption, which is provided as a nonlinear map in function of engine
speed and torque, and allows its evaluation at each instant, for a measured speed and estimated torque.
Depending on the type of application, several consumption models are conceivable, as summarized in
[111]:

1. white-box models, based on engine physical processes (high fidelity, but very complex)

2. black-box models: engine-based (input data are engine torque and speed) and vehicle-based (dif-
ferent inputs are possible: vehicle speed, acceleration, road grade)

3. gray-box models, a synergy between white-box and black-box, which include some transient as-
pects, related to emissions or fuel consumption

For eco-driving or cruise control applications, a vehicle-based consumption model is generally used,
whereas for supervisory powertrain control problems, such as energy management, an engine-based
model is more suitable. Therefore, the scope of this section is to approximate the fuel map by an analytic
expression in engine torque and speed.

The most common consumption model is Willans line [3], [112], [113] where a linear dependence
with respect to power (Pice) is introduced:

ṁf = γ0 (ωice) + γ1Pice (2.20)
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In the second chapter of [112] it is mentioned that this model is more suitable for a CI engine,
because a SI shows a “fuel rate increase near maximum torque, which is typically related to an enriched
fuel mixture commanded by the engine controller and meant to cool the valves”. In [114] it is equally
observed that an affine approximation in Pice tends to underestimate the fuel rate at high loads for SI
engines, due to enrichment. Therefore, for a SI engine, a quadratic expression in power would be more
appropriate:

ṁf = γ0 (ωice) + γ1Pice + γ2P
2
ice (2.21)

as proposed in [22], too, but where a proportional term in vehicle speed was added. In [85] it is also
stated that Willans line approximation is not appropriate for high speed, and therefore, a second-order
term in speed is added.

In the literature, extensions of (2.20) are equally used: in [115] the slope γ1 is piecewise constant; in
[116] both coefficients γ0 and γ1 are expressed as 2nd order polynomials in ωice. This is also the case for
its quadratic counterpart: in [54], [117] a 2nd order polynomial in torque was defined, with coefficients
dependent on speed, but without an explicit definition, whereas in [118] the coefficients were detailed as:

ṁf = k5T
2
ice + (k4ωice + k3)Tice + k2ω

2
ice + k1ωice + k0 (2.22)

In addition to these attempts, more complicated consumption models can also be encountered: in
[119], a ratio of polynomial expressions in torque and speed is used

(
aTiceωice+bωicecω

3
ice

h+kωice+lω2
ice

)
, which is

deduced from a complex, vehicle speed-based model that represents an unified expression for the fuel
rate of cruising and accelerating vehicle, introduced in [120]:

ṁf =
Fd

1 + eβ(v̇+C)
+ e−( v̇σ )

2

(k1 + k2v + k3v
3) +

c1 + c2v̇v

1 + e−β(v̇−C)

where Fd is the consumption rate of decelerating vehicle (considered constant), c1, c2, k1, k2, k3 are con-
stants that appear in the approximation of the fuel rate for acceleration phases and cruising, respectively,
whereas β and C define the suitable sigmoid functions and σ is the standard deviation of normal distri-
bution. In [121] a 3rd order polynomial in speed and torque

(∑i=3
i=0

∑j=3
j=0 ω

i
iceT

j
ice

)
is used, whereas in

[122] a 4th order is proposed; in [123] a dynamical correction term is introduced, represented by engine
torque variation, in order to correctly handle the transient fuel consumption.

Piecewise approximations are also used:

- in [124], a first order polynomial in ωice, divided in 10 partitions with respect to torque

- in [125] the engine map was divided into 18 subareas, for which a 2nd order polynomial in speed
and torque was defined

In [126], several low-degree polynomials in power and torque have been validated on engine dy-
namometer, chassis dynamometer and road tests measurements, respectively, with data coming from 15
different SI engines. None of the models has a cubic torque term, the stated argument being that they
hardly bring an improvement in the approximation and they also “cause unnatural shape” in the brake
specific fuel consumption. The 2 polynomials that yielded good results for all validation scenarios, with
close performance one from another, are defined as:

ṁf = (k8ω
2
ice + k7ωice + k6)T 2

ice + (k5ω
2
ice + k4ωice)Tice + k3ω

3
ice + k2ω

2
ice + k1ωice (2.23a)

ṁf = k5T
2
ice + (k4ωice + k3)Tice + k2ω

2
ice + k1ωice + k0 (2.23b)
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Fig. 2.14 – Fuel rate evolution with respect to engine torque, for different values of speed; turbocharged,
1.2 SI engine
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Fig. 2.15 – Fuel rate evolution with respect to engine torque, for different values of speed; turbocharged
CI engine
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In this work, the fuel maps for 2 engines are available: a turbocharged SI and CI engines, depicted in
Fig. 2.14 and 2.15, as functions of engine torque, for different speed values.

It can be noticed that the CI engine shows a quasi-linear behavior in torque for all speed levels,
whereas the SI exhibits a nonlinear tendency for high loads, starting with average speeds. In what
follows, 3 polynomials are tested for curve fitting: first and second degree in torque, as well as second
order in speed. Each of them represents a family of polynomials, with coefficients defined for a given
engine speed (2.24a, 2.24b) or torque (2.24c).

ṁf = p1 (ωice)Tice + p0 (ωice) (2.24a)

ṁf = p2 (ωice)T
2
ice + p1 (ωice)Tice + p0 (ωice) (2.24b)

ṁf = p2 (Tice)ω
2
ice + p1 (Tice)ωice + p0 (Tice) (2.24c)

The accuracy of these approximations on the identification data is quantified in Table 2.7, where the
root mean square error is presented.

Table 2.7 – RMSE (Root Mean Square Error) for different consumption approximations [g/s] and average
ṁf . Validation on identification data

Engine ṁf (2.24a) (2.24b) (2.24c)
SI 2.67 0.75 0.5 0.37
CI 1.16 0.08 0.07 0.06

Note that for the CI engine, the difference between polynomials is insignificant and this can also be
concluded from Fig. 2.15. A first order polynomial in torque can therefore be retained, which validates
the aforementioned remarks about Willans line. For a SI engine, it can be seen from the results, as well
as from Fig. 2.14, that a linear expression in torque is not suitable. The second order polynomial in speed
(2.24c) is the most accurate, as shown in Table 2.8, too, where the validation was performed on different
drive cycles. The torque dependence of polynomial parameters is depicted in Fig. 2.16 and it can be seen
that it is highly nonlinear, but a piecewise linear approximation is feasible (see curves in red):

p
(i)
j (Tice) = a

(i)
j Tice + b

(i)
j , j = 0 . . . 2 (2.25)

with i = 1 . . . Npart the index of the piecewise linear partition and Npart the number of partitions (for
the specific case considered here: Npart = 5).

This approximation leads to a simplified version of (2.24c):

ṁf =
(
a

(i)
2 ω2

ice + a
(i)
1 ωice + a

(i)
0

)
Tice + b

(i)
2 ω2

ice + b
(i)
1 ωice + b

(i)
0 (2.26)

Its accuracy was also evaluated on different drive cycles and quantified in Table 2.8. An improvement
can be obtained either by increasing the number of partitions, or by performing the division directly on
the fuel map (Fig. 2.14), that captures the changes in fuel rate slope with respect to torque. For instance,
it can be noticed that the low torque region (Tice < 12Nm) should be handled separately for both SI
and CI engine and that a more frequent division is necessary for SI, for Tice > 120Nm. Therefore,
a family of PWL polynomials in torque can be obtained, similar to 2.24a, but calculated for a specific
torque region i:
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Fig. 2.16 – Torque dependence of polynomial parameters for (2.24c), SI engine case-study; real values
and PWL approximation

ṁf = αi(ωice)Tice + βi(ωice), i = 1 . . . Npart (2.27)

The granularity of the partition can be adapted in function of the engine type, with an increase from
a CI (for which no more than 2 partitions are needed) to a turbocharged SI engine, which exhibits a more
nonlinear behavior with respect to its normally aspired version, the proposed model being therefore
generic. The approximation is depicted in Fig. 2.17 and its accuracy quantified in the last column of
Table 2.8, where a significant improvement with respect to (2.26) can be observed.

Table 2.8 – RMSE for different consumption approximations [g/s] and average ṁf . Validation on drive
cycles

Drive cycle ṁf (2.24a) (2.24b) (2.24c) (2.26) (2.27)
NEDC 0.816 0.0734 0.062 0.01 0.03 0.01

Artemis urban 0.97 0.062 0.053 0.027 0.042 0.012
FTP-75 0.9 0.071 0.058 0.017 0.04 0.01

Traffic Jam 0.6 0.061 0.038 0.007 0.03 0.015
Artemis road 1.1 0.077 0.062 0.06 0.072 0.008
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Fig. 2.17 – PWL approximation with respect to torque for the fuel rate of the SI engine

3 Conclusions

In this chapter, a control-oriented model for a variety of hybrid powertrains was proposed. The main
contribution is the inclusion of dual-clutch transmission-based architectures, which are often neglected
in the specialized literature. The static expressions of torque and speed were detailed for parallel HEV
and extensions were provided for the remaining cases, with the exception of planetary gear set-based
architectures, with multiple clutches, for which only some specific case-studies were handled. A generic
fuel consumption approximation was also introduced, which will facilitate the formulation of the opti-
mization problem that represents the next topic of this work.

Dans ce chapitre, un modèle orienté-contrôle pour une variété de GMP hybrides a été proposé. La
contribution principale est la prise en compte des architectures basées sur des transmissions double-
embrayage, qui sont souvent négligées dans la littérature spécialisée. Les expressions statiques du couple
et de vitesse ont été détaillées pour un hybride parallèle et des extensions ont été fournies pour les cas
restants, à l’exception des architectures basées sur des trains épicycloidaux, avec des contacts multiples,
pour lesquelles seulement quelques études de cas spécifiques ont été adressées. Une approximation
générique de la consommation de carburant a également été introduite, qui facilitera la formulation du
problème d’optimisation qui représente le sujet suivant de cette thèse.
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Chapter 3

Predictive energy management

In this chapter, an energy management strategy based on model predictive control
is introduced. At a first stage, only the torque split between the combustion engine and
the electric machine is addressed. The model introduced in the previous chapter will
be used for prediction with the appropriate parametrizations. Besides the prediction
model, one of the most challenging tasks in the MPC approach is the definition of the
cost function (the control objective) to be minimized. Usually, it is expressed as a trade-
off between the reduction of the setpoint tracking error and the command effort. Here,
an energetic criterion needs to be conceived, that responds to the problem objectives i.e.
the consumption minimization for a system with two energy sources.

The problem will be formulated in a standard quadratic programming form, for
which dedicated solvers exist. Engine stop can provide a significant fuel gain, espe-
cially in urban driving, and therefore its inclusion is also considered. Hence, the MPC
problem is extended with this functionality, but without introducing a binary decision
variable (engine ON/OFF). This feature is remarkable as it avoids introducing a mixed-
integer quadratic programming that demands adapting the solver and hence, introduces
an additional degree of complexity. The engine stop-start strategy relies on a rule-based
mechanism, which uses the command provided by the MPC.

Tuning is another major problem of model predictive control and it is often cum-
bersome. Moreover, for this specific problem, it is strongly dependent on drive cycle
characteristics, which can be accurately foreseen for a limited time window. Here, the
tuning is handled upstream of the MPC problem, by exploiting preview traffic data over
a longer horizon than the one used by the MPC controller. The energy management
problem is therefore structured as a two-layer predictive strategy.

In addition, the potential of free wheeling is analyzed and unlike previous work, it
is addressed in an analytical manner. This functionality involves no pedal pressing and
it usually concerns constant speed phases on highway. Here, the problem is extended
to time-varying speed phases. The strategy evaluates the time-wise speed deviation be-
tween the reference and the free wheeling and it decides whether the solution is accept-
able or not for a given coasting initiation and deactivation time.
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Dans ce chapitre, une stratégie de gestion d’énergie basée sur le model predictive
control est introduite. Dans une première étape, seulement la distribution de couple en-
tre le moteur et la machine électrique est adressé. Le modèle introduit dans le chapitre
précédent sera employé pour la prédiction avec les paramétrisations appropriées. En
dehors du modèle de prédiction, un des éléments les plus problématiques est la défini-
tion de la fonction coût (l’objectif) à minimiser. Traditionnellement, elle est exprimée
comme un compromis entre la réduction de l’erreur de suivie de consigne et l’effort de
commande. Dans ce travail, un critère énergétique doit être introduit, qui répond aux
objectifs du problème i.e. la minimisation de la consommation pour un système avec
deux sources d’énergie.

Le problème sera formulé sous une forme quadratique standard, pour laquelle des
solveurs dédiés existent. L’arrêt moteur peut apporter un gain signifiant, surtout en con-
duite urbaine, et par conséquent son inclusion est également considérée. Le problème
MPC est donc étendu avec cette fonctionnalité, mais sans l’introduction d’une variable
de décision binaire (moteur ON/OFF). Cette approche est remarquable car elle évite
l’emploi d’une programmation quadratique mixed-integer qui demande l’adaptation du
solveur et qui, par conséquent, rajoute un dégrée de complexité. La stratégie d’arrêt
moteur s’appuie sur un mécanisme rule-based, qui utilise la commande fournie par le
MPC.

La calibration est un autre problème majeur du MPC, souvent lourd. En outre, pour
le problème considéré, elle est fortement dépendante des caractéristiques du cycle de
conduite, qui peut être prédit pour un horizon limité. La calibration est traitée ici au
niveau au dessus du MPC, en exploitant les informations du trafic sur un plus long hori-
zon que celui utilisé par le contrôleur MPC. Le problème de la gestion d’énergie est
donc structurée en deux couches.

En outre, le potentiel du free wheeling est analysé et à la différence des travaux
précédents, il est adressé sous une forme analytique. Cette fonctionnalité implique
l’absence d’appui pédale et elle concerne notamment les phases de vitesses constante
sur l’autoroute. Dans cette thèse, le problème est étendu pour les phases de vitesse
variantes dans le temps. La stratégie évalue la déviation entre la vitesse de consigne
et celle en roulage libre et décide si la solution est acceptable pour une initiation et
désactivation du coasting données.
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1 State-of-the-art

In the first chapter an overview presentation of the energy management system for hybrid vehicles
was introduced, aiming to present all the possible objectives and degrees of freedom, as well as the poten-
tial available inputs and the targeted case studies (vehicle and configuration type). Here, a more detailed
characterization will be provided, focused on dynamical aspects with the ultimate goal of developing
model-based control strategies.

Energy management strategies are expected to attain the objectives in real-driving conditions and
thus, to integrate feedback from the system and to be real-time implementable. From a control perspec-
tive, this problem arises many challenges, due to a number of uncertainties such as trip characteristics
(speed, slope), driver behavior (especially in change-of-mind situations), traffic status (jams, detours).
Some of the elements are potentially predictable over a certain horizon, whereas others (driver’s change-
of-mind) cannot be anticipated. Usually, the first stage in the performance evaluation is to determine the
maximum potential of the system to reduce the fuel consumption for regulated drive cycles. This implies
finding offline the global optimum under the assumption that the drive cycle is entirely known and keep
this result as the reference value.

The best candidate for this problem is the Dynamic programming (DP) [15], a method based on
Bellman’s optimality principle, which can be stated as follows [127]: “An optimal control policy has the
property that whatever the initial state and initial decisions are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decisions”. The input and state variables
are discretized at a representative step for the desired precision and at each instant a cost-to-go function
is computed. The computational burden and the memory increase linearly with respect to grid size, but
exponentially with respect to number of states, which considerably limits the potential for its use in
real-time applications, its results remaining generally at the level of a benchmark solution [128], [91],
[103]. There is however a possibility to integrate this solution in real-time, but only for one state variable
and a short-term horizon, to numerically solve optimization problems under constraints as in [73], [32]
or [102]. A description of this method can be found in [129] and details about its implementation in
Matlab, on a HEV case study, is presented in [130].

Pontryagin’s Minimum Principle (PMP) is another candidate for solving optimal control problems,
which gives necessary conditions of optimality. If the control problem admits one solution, then these
conditions are satisfied [131].

Given a system
ẋ = f(x, u), x(0) = x0 (3.1)

a performance index over a time slot can be written as:

J (x0, u) =

∫ tf

t0

L (x(t), u(t)) dt (3.2)

where L(·) denotes the quantity to be minimized. The Hamiltonian can be therefore constructed as:

H (x, u, λ) = L (x, u) + λf(x, u) (3.3)

where λ represents the co-state or the adjoint state (the variable t has been omitted for an easier reading).
Then PMP states that the following necessary optimality conditions 1 are verified by the optimal control

1If state constraints are active, the co-state will exhibit discontinuities
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u∗ ∈ U [132]:

ẋ =
∂H

∂λ
(x, u, λ) (3.4a)

λ̇ = −∂H
∂x

(x, u, λ) (3.4b)

u∗ = arg min
u∈U

H(x, u, λ) (3.4c)

For the energy management problem, the quantity to be minimized is the fuel consumption, whereas
the state variable is the battery SOC. Therefore L(x(t), u(t)) is defined as:

L (u(t)) = ṁf (ωice(t), Tice(t)) (3.5)

The cost function not being dependent on the state x, a simplified expression can be written for the
adjoint state dynamics (3.4b):

λ̇ =
∂f(x, u)

∂x
(3.6)

where f(x, u) can be derived from the dynamics of the state of charge (1.11):

˙SOC = −
OCV ((SOC))−

√
OCV ((SOC))2 − 4R((SOC))Pbat

2R((SOC))Qmax

For a charge sustaining operation it can be assumed that the battery parameters OCV and R do not
vary significantly w.r.t. SOC. Therefore, the function f does not depend on the state x and as a result,
for a given drive cycle the assumption λ̇ = 0 i.e. λ = constant is not restrictive [3], [26].

For each drive cycle there is a constant co-state, which can be determined offline, that ensures the
optimality of the solution, as detailed in [131] and explained in Fig. 3.1. Therefore PMP is sometimes
preferred to DP, due to its considerably faster implementation. The similarity in terms of performance
between DP and PMP is also stated in [133].

The online version of PMP solution and the most popular energy management method is the ECMS
(Equivalent Consumption Minimization Strategy) [25], [134], [26]. Among the first papers that intro-
duced this strategy is [24], where the battery is seen as an energy buffer, that can be temporarily used.
Each electrochemical consumption corresponds to an equivalent fuel consumption, hence the name of
the method. The cost function to be minimized is formulated based on PMP, but with a physical inter-
pretation for the terms appearing in the Hamiltonian (3.3):

H(t, u(t), λ(t)) = Pf (t, u(t)) + λ(t)Pe(t, u(t))

Pf (t, u(t) = HLV ṁf (t, u(t))

Pe(t, u(t)) = − ˙SOC(t, u(t))OCV (t)

(3.7)

where Pf is the fuel power, HLV is the lower heating value of the fuel, Pe is the electrochemical power
and the control variable is usually the engine torque u = Tice. Therefore, the cost function is expressed
as a weighted sum of two physical powers, the co-state λ(t) being often referred to as the equivalence
factor. The ECMS being exclusively oriented toward online implementation, the value of the tuning
factor λ can no longer be constant, as is the case for its offline counterpart, PMP-based. The essence of
the ECMS relies on the tuning procedure, for which several solutions have been proposed over the years:

Page 52



1 State-of-the-art

Fig. 3.1 – Schematic representation of PMP implementation, with the equivalence factor λ kept constant
a priori during the entire drive cycle; if at the end of the drive cycle the SOC is different from the target,
then an adjustment of the λ value is necessary; Uadmissible is a vector with admissible inputs for which
the Hamiltonian H is evaluated

- an average efficiency-based method [24], which has the advantage of simplicity, but the disadvan-
tage of lacking a SOC feedback from real-time evolution

- a constant term plus a PI-like controller with respect to the target SOC, which is constant and equal
to the initial value [128], [135]:

λ(t) = λ0 + kp (SOC0 − SOC(t)) + ki

∫ t

0
(SOC0 − SOC(τ)) dτ (3.8)

or just a proportional controller [136], with a variable SOC setpoint, which includes the energy
potentially recovered during regenerative braking. A nonlinear adaptation of tuning factors is
also possible: in [137] a tangent-like adaptation w.r.t. SOC is proposed, the goal being to slightly
adjust the equivalence factor for small variations of SOC around the reference value, but to strongly
penalize large variations

- adaptation based on driving conditions identification (based on past and predicted data) method
referred to as Adaptive-ECMS [138]

- binary search such that SOC has a certain evolution at the end of a prediction horizon [139]
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More details about these tuning strategies can be found in [140], [141] and Chapter 7 from [3].

Fig. 3.2 – Schematic representation of ECMS implementation, with the equivalence factor λ adapted
with respect to SOC; Uadmissible is a vector with admissible inputs for which the Hamiltonian (3.7) is
evaluated. The output of the ECMS is the torque of the ICE.

Moreover, ECMS can be extended to handle emissions reduction, as in [59], [12], [142], [88] or
battery thermal management [14], by introducing additional corresponding co-states. ECMS can be
implemented either by evaluating the Hamiltonian for a set of admissible inputs and selecting the value
that corresponds to the minimum, as in Fig. 3.2, or through lookup tables, constructed from offline
calculations. They usually receive as inputs the driver demand, vehicle speed, SOC and the equivalence
factor [37].

As summarized in the first chapter, current technologies allow to foresee different road elements
over a certain distance, which can be exploited to reconstruct the future reference speed, sometimes
in conjunction with a driver behavior model [64], [18]. This availability of upcoming trip information
encourages the orientation toward finite-time moving horizon control structures. One of the most en-
countered predictive control method is Model Predictive Control (MPC), which will be introduced in
the next subsection. It is an optimization-based control strategy under constraints, which calculates a
sequence of commands that minimizes a cost function over a prediction horizon. Only the first command
is applied to the system, combining therefore the open-loop optimal solution with feedback.

Among the first papers that exploited telemetry data for the torque split problem is [16], where the
vehicle speed and wheel torque demand are estimated for a preview horizon between 250m and 3000m.
This data is next introduced in a nonlinear MPC formulation that minimizes the fuel consumption over
a future feasible horizon. The problem is solved using DP, for which some simplifications were made in
order to make a real-time implementation possible: for instance, the grid was more finely discretized in
the neighboring area of the current time and more roughly in the far regions, as a result of the receding
horizon concept. In [17] information about the front vehicle is exploited, with a maximum headway of
400m, in order to correctly induce a deceleration that allows a maximum energy recovery. The speed
profile is calculated at a supervisory level with DP and the torque split problem is handled with ECMS.
In [32] the problem is formulated as a co-optimization of the speed profile and the torque split, into an
MPC framework. The cost function is similar to (3.7), where a proportional SOC corrector was used
for λ adaptation. A very simplified linear SOC model was used, but valid under the assumption that
SOC variations are of only ±10%. Constraints are imposed on vehicle speed and acceleration, and the
problem was solved with a Sequential Quadratic Programming (SQP).

Due to its ability to cope with constraints, MPC gradually became in the last years an attractive
solution for the energy management problem, in its stochastic or deterministic form. The former uses a
stochastic model for the uncertainties of the predicted data: [101], [64], [121] and [143] use a Markov
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chain to model the driver behavior and calculating therefore the wheel power demand, whereas in [103],
Markov chains are used for the prediction of the road grade.

In the present work, it is assumed that the vehicle speed can be accurately predicted over a horizon
up to 2 minutes, which will allow to estimate the wheel torque demand. Traffic forecast techniques are
out of the scope of this work and therefore, no further information is provided regarding data acquisition.

The PHEV case is usually handled separately from the others HEV. In a tank-to-wheel analysis, the
goal is to deplete the battery by the end of the trip, if this coincides with a charging point. If the trip
distance is longer than the all-electric range, than a close-to-optimal solution is a linear SOC reference
trajectory w.r.t distance, as in [144]. However, adjustments must be performed in order to appropriately
accommodate different road characteristics. In [81] the considered road presents important elevation
changes and the available potential energy is interpreted as an extension of the all-electric range. In [11],
it is mentioned that for speed profiles with inconsistent driving pattern, i.e. that contain segments of very
high and low power, the depletion rate is no longer constant, but rather piecewise constant as detailed in
[82], where the trip is divided into several domains that verify a certain pattern. The same idea can be
found in [83], with an improvement related to hilly subsections, for which a linear discharge with respect
to energy, rather than distance, is introduced. One challenging problem is therefore long-term traffic
prediction that allows a pattern-based division of the trip [145], [146]. It should be noticed that from a
client-cost perspective, it can be more appropriate to explicitly consider the price of grid electricity and
of fuel in the optimization problem. In [147] a range-extender with plug-in is tackled and it is considered
that the engine is not owned by the user, but only rented when needed.

In the absence of an external charging, the battery should not be depleted by the end of the drive
cycle, because it would have to be recharged later, via the engine, which involves an additional fuel
consumption. For this type of hybrid, it is therefore important to maintain the final state-of-charge
between certain limits and this framework will be adopted in the present thesis. In order to correctly
evaluate the performance, it is required in simulation that final state-of-charge value must equal the
initial one. The goal is twofold: a fair comparison with the consumption of a conventional vehicle and
between different control strategies for a given hybrid vehicle.

As already announced, the torque split problem will be addressed in an MPC framework and before
the problem formulation, a brief presentation of the MPC method will be next introduced.

2 Model predictive control-based torque split

2.1 MPC: an overview

Model Predictive Control is a relatively recent control technique that emerged in the late 70s, with a
first application in the chemical industry. It is especially oriented toward problems of setpoint tracking
where the anticipation of the system evolution subject to future commands improves the control perfor-
mance. The setpoint can be constant or generated by a model. Traditionally, the goal is to minimize the
tracking error and the command effort, under state and command constraints. However, in the absence of
a setpoint tracking, MPC optimizes an energetic criterion under constraints, in which case it is referred
to as Economic MPC [148]. MPC relies mostly on the following elements [149]:

- prediction of the system output over an horizon Np, based on a mathematical model of the dynam-
ical process

- calculation of a sequence of future commands of length Nc that minimize a cost function under
constraints over a finite horizon
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- application of only the first value of this optimal sequence to the system. At the next time step,
new measurements are available and the procedure is repeated, in a receding horizon manner.

Fig. 3.3 – MPC principle; k is the current time index, Nc the control horizon and Np the prediction
horizon

Calculating a sequence of commands and using only the first value may seem computationally ex-
pensive, without an explicit performance improvement. The purpose is to combine open-loop optimal
control with feedback from the system; simultaneous calculation of a block of optimization variables,
instead of just one element, implies that in the calculation of the each element there is an anticipation
of its effect over the considered horizon. If the entire block of commands is applied to the system, no
feedback is incorporated and thus, model inaccuracies or unpredicted phenomena are not appropriately
handled.

MPC was mostly used during the ’80s and ’90s for systems with rather slow dynamics, that can be
approximated by linear models, but in the last 20 years it showed an expansion toward plants with fast
dynamics, with nonlinear prediction models [150] or even hybrid systems [151]. In this case, MPC is
referred to as Nonlinear and Hybrid MPC, respectively, due to the nature of the prediction model. Linear
models can provide good results for an evolution of the system around the operating point, where the
model is valid. Moreover, they are generally used in conjunction with a quadratic cost function, under
linear constraints, leading to a convex optimization problem, for which efficient solvers exist. In what
follows, MPC formulation will be presented under its standard, linear form. For its nonlinear counterpart,
details can be found in [152].

In practice, there are several ways to enforce asymptotic stability, with a detailed review in [153].
The most common is the introduction of a terminal cost function; the approach is inspired from the
infinite-time optimal control of unconstrained linear systems and it yields to adding in the cost function
J from (3.26) a term usually expressed as 1

2y
TPNy, with PN > 0 obtained from the Riccatti equation

in reverse time and accounts for a control Lyapunov function in a neighborhood of the equilibrium
point. For constrained and nonlinear systems, the stability can be achieved in conjunction with a final
state confinement in a given compact set, which enjoys controlled positive invariance properties. The
convergence and stability are implicitly handled by the final cost or a large enough prediction horizon.
Both approaches intend to transform the optimal cost function in a control Lyapunov function.

Constraints handling represents a major advantage of MPC, but if not satisfied, they can lead to
infeasibility. A solution to avoid this problem is to soften the constraints, i.e. to allow small violations,
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but with a penalty in the cost function. For a given cost function J(x, u), with a relaxed constraint on the
control variable, this can be written as:

min
u,ε

J(x, u) + ρε2 (3.9)

s.t. umin − ε ≤ u ≤ umax + ε (3.10)

where ε is referred to as slack variable, whose value in case of constraints violation is highly penalized
by ρ > 0.

To sum up, MPC relies on the following elements:

- a prediction model (linear, linear time-varying or nonlinear)

- a cost function with associated constraints, that incorporates the control objectives and considers
the measurements and actuators availability

- a solver that allows a real-time implementation

In what follows, before proceeding with the presentation of the standard MPC form for energy man-
agement, the prediction model will be first introduced, followed by the cost function definition.

2.2 Prediction model

As mentioned in the first chapter, the energy management is a complex problem that can handle
multiple objectives, through different degrees of freedom. Here, the torque split problem is mainly
addressed and the only dynamics considered are related to the evolution of the battery state-of-charge,
given by the nonlinear model from (1.11). These choices were dictated by the following assumptions:

1. the driver behavior is considered into a backward framework (see Section 3), i.e. a speed profile
is pre-imposed, which generates a power reference for the driveline. Here, the speed tracking is
handled at an upper level and assuming the speed known in advance for a certain horizon, the
wheel torque can be calculated as in (1.2), given the vehicle parameters.

2. from the previous assumption and relation (2.2) it can be concluded that the real time decision on
the engine torque Tice can be considered as the unique control variable. The contribution of the
electrical path is straightforwardly deduced from (2.2) i.e.

∑
pos
r
w/pos
em T posem = Tw − rwiceTice. In the

case with several electric machines, the torque distribution between them relies exclusively on the
static efficiency.

3. the gearshift is handled separately from the torque split and therefore, the gear numbers are set
as inputs for the energy management problem, even for an automatic transmission. The optimiza-
tion of the engine operating point can significantly reduce the consumption, but it is subject to
NVH (Noise, Vibration and Harmonics) requirements, drivability constraints such as avoidance
of frequent gearshifts or of rapid shifting back and forth, phenomenon called hunting [10], but
also safety: a fuel-optimal solution is to upshift as much as possible, but this reduces the torque
margin, hindering the reactivity possibilities in case of change-of-mind situations. The drawback
is that the simultaneous optimization of the torque split and gearshift will significantly increase the
computational burden due to the addition of a control variable (usually discrete) and to the formu-
lation of constraints. The latter depend on the operating point that would need in this case to be
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also optimized, making therefore their formulation over-complicated for the established objective.
To summarize, physical and computational constraints outsource the gearshift strategy without a
significant sacrifice of the fuel gain.

The state dynamics x = SOC (1.11) can be detailed as below, where u = Tice and the electric torque
Tem was expressed based on the static relation (2.2):

ẋ = −
OCV (x)−

√
OCV (x)2 − 4R(x)

(
π
30ωem

Tw−rwiceu
rwem

+ loss
(
ωem,

Tw−rwiceu
rwem

))
2R(x)Qmax

(3.11)

A nonlinear prediction model raises further difficulties in formulating the control problem and here,
a linearization at the operating point (x0, u0) is introduced for ẋ = f(x, u):

ẋ ≈ f(x0, u0) +
∂f

∂x

∣∣∣∣
x=x0

(x− x0) +
∂f

∂u

∣∣∣∣
u=u0

(u− u0) (3.12)

It is assumed, based on the high sampling rated and the battery time constants, that the battery
parameters OCV and R do not vary significantly during the prediction and therefore ∂f

∂x = 0. With
this simplification and after discretization with sampling Ts at current engine torque uk0, the linearized
model becomes:

xk+1 − xk
Ts

= f(x0, u0) +
∂f

∂u

∣∣∣∣
u=uk0

(uk − uk0) (3.13)

which can be written in a compact form as:

xk+1 = xk +Bkuk +Dk (3.14)

where Bk and Dk are expressed as below:

Bk =
π

30

1

Qmax

ωemk
fk

rwicek
rwemk

Ts (3.15a)

Dk =
−OCV + fk

2RQmax
Ts −Bkuk0 (3.15b)

Let Tem(k|k − 1) = 1
rwemk

(
Twk − rwicekuk0

)
. Then:

fk =

√
OCV 2 − 4R

( π
30
ωemkTem(k|k − 1) + loss(wemk , Tem(k|k − 1))

)
The model complexity is given by the time-varying characteristic of Bk and Dk, which depend on

EM rotational speed ωemk and torque demand Twk .

Table 3.1 – RMSE for SOC LTV model validation

Drive cycle NEDC Artemis urban FTP-75 Traffic jam
RMSE[%] 0.0812 0.29 0.25 0.09

Model validity was tested for a prediction horizon of 5s and its accuracy is analyzed in Fig. 3.5
for different scenarios and quantified in Table 3.1. The validation consisted in applying a sequence of
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Fig. 3.4 – Principle of SOC LTV model validation
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Fig. 3.5 – SOC LTV model vs SOC nonlinear model, for a prediction of 5s

a-priori calculated commands to both nonlinear and linearized model; every 5s the LTV model was
updated with the SOC value given by the nonlinear model, as in Fig. 3.4 (for the considered case, the
sampling time was of 0.5s and hence, N = 10). The purpose is to evaluate how distant the evolution of
the approximated SOC trajectory is from the one provided by the nonlinear model.

The MPC problem is therefore formulated in a LTV framework, with a single control variable (engine
torque Tice), by assuming the vehicle profile and the driveline states foreseen over a given horizon,
typically of 30s. In the next subsections, it will be shown that the engine state can be handled without
introducing a dedicated ON/OFF control variable, but first the cost function needs to be defined.

2.3 Optimization criterion

The considered control problem focuses on the reduction of the fuel consumption, in the context
of availability of an energy buffer, that can be replenished during driving, either by recovering the ve-
hicle energy, or by shifting the engine operating point toward higher torques than necessary. A local
fuel-friendly strategy would be to use the battery as much as possible, but the absence of external charg-
ing would imply to charge the battery later, via the engine, if the regenerative braking phases are not
important enough and therefore, it is far from the global optimum.

Regarding the choice of the optimization criterion, there are two main approaches that can be distin-
guished in the literature:
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1. construction of a cost function based exclusively on the fuel consumption, with an enforced con-
straint on final SOC

2. inclusion of the SOC variation in the cost function

The first approach can take different mathematical forms. In [102] the following cost function was
defined as:

Jk =

∫ (k+Np)∆t

k∆t

(
ṁf (u(t))2 + λO(t)

)
dt (3.16)

where O(t) is the engine ON/OFF switching time and λ a penalty factor. With respect to the battery use,
a very conservative approach is adopted, enforcing SOC(k + Np|k) = SOC0 where SOC(k + Np|k)
denotes the predicted SOC trajectory. The problem is formulated into a nonlinear MPC framework and
it is solved using DP.

In [117], the MPC problem is formulated as a Second Order Cone Problem (SOCP), which is a non-
linear convex problem and it minimizes “a linear function over intersection of affine set and product of
second-order cones”. Linear and quadratic programming are particular cases of SOCP. In addition to
torque split, the quoted reference addresses also the engine stop. The cost function is the fuel consump-
tion over an horizon and for the SOC trajectory, the following inequality constraint is imposed:

SOC(k) + ∆t

Np∑
i=0

˙SOC(k + i|k) ≥ SOCref (3.17)

A similar approach is encountered in [31], with the difference that the fuel consumption is approx-
imated by a linear model in engine torque, whereas [117] uses a second-order polynomial; in [154] the
method follows the same logic, but using a nonlinear prediction model.

For real-time computation perspective, the MPC would rather use short-range prediction especially
when constrained optimization is considered. Moreover, it relies on traffic preview data, which cannot
always present an elevated precision or reliability, mainly in case of aggressive or unpredictable drivers.
If the prediction model is resulted from a linearization at the operating point, its validity is restricted to a
small neighborhood around this point. Hence, in the context of small prediction horizons, the approach
(1) may lead to conservative results.

For the second approach, i.e. the inclusion of the SOC variation, there are 2 main methodologies.
The first is to consider the electrochemical consumption similar to the ECMS design (3.7), but where the
weighted sum of the two powers is evaluated over a prediction horizon.

Jk =

Np∑
i=1

(Pf (i) + λkPe(i)) (3.18)

In [32] a linear SOC model is used and the problem (3.18) is solved using a Sequential Quadratic
Programming (SQP) based optimization algorithm (the result being presented in Matlab simulation envi-
ronment), for short-range prediction horizons (5-15s). The tuning factor λk is adapted with a proportional
SOC corrector, similar to (3.8). In [155] the cost function includes also a penalty term for the engine
ON/OFF. The prediction is of the order of 10s and the problem resolution relies on Matlab’s fmincon.

The second method considers the tracking error between the SOC predicted trajectory and a setpoint
SOCsp, for each predicted step [73], [124] or exclusively for the final SOC [156]. Therefore, the cost
function becomes:

J =

∫ tf

t0

(
ṁ2
f (τ) + λ(SOC(τ)− SOCsp(τ))2

)
dτ (3.19)
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This leads to a standard setpoint tracking formulation: trade-off between the tracking error and the
energetic consumption ṁf . It should be noted that the SOC reference is set constant, the reason being
that in a charge sustaining operation, the SOC evolution is maintained in a mid-range value. The cost
function (3.19) may therefore not respond to the energetic objective that is to allow the free use of the
battery, instead of following a fixed target. An alternative is to define a time-varying SOC reference, by
exploiting traffic preview data. In [114] the SOC target is calculated such that energy recovery during
braking is possible and by reducing the rate of change between the fixed segments of braking, which
is performed in order to extend the NiMH battery lifetime. In [157], the trip is divided under several
segments, defined by similar characteristics and for each segment a constant SOC setpoint is calculated
with DP, which uses the fuel consumption as the performance index.

In view of all these previous attempts, the present work will adopt an energy-oriented optimization,
placing the problem into an Economic MPC framework, already mentioned in [117]. As a difference with
[117], here the cost function will also consider the electrochemical consumption and thus, anticipating
a premature depletion through a trade-off at the consumption level, rather than by means of constraints.
Therefore, the proposed optimization criterion meets the approach from (3.18), but in a quadratic form.
With the linearized models introduced before, this choice allows the problem to be formulated in a
standard convex form, which favors an efficient implementation. In its generic form this optimization
problem will be written:

min
Uk

Nmpc∑
i=1

P 2
fk

(Uk(i)) + λ2
k (Pek(Uk(i))− Pemink(Uk(i)))

2 (3.20)

where Uk =
[
uk uk+1 · · · uk+Nmpc−1

]
, Nmpc is the prediction horizon and Pemink is the electro-

chemical power minimal value. This latter element is used as an offset term, in order to properly include
the sign information of the electrochemical power, that would otherwise be lost if only the squared value
were used. This choice and the argument behind its construction can be analyzed in Fig. 3.6, where for
the linear approximations of the two powers, their dependence of the control variable u is depicted. If
the engine provides a greater torque than the demand, the torque in excess is used to charge the battery,
making Pemin negative.

2.4 Linear Time-Varying MPC framework

Once the prediction model and the cost function are introduced, the next step is to present the MPC
framework that solves the optimization problem. The SOC model is linear time-varying, due to variations
of Bk and Dk, resulting into a LTV-MPC problem, whose standard formulation is introduced below,
followed by its application to the torque split problem.

2.4.1 Standard formulation

Let: {
xk+1 = Akxk +Bkuk +Dk

yk = Cxk
(3.21)

be the state-space evolution of a linear time-varying dynamical system, with x ∈ Rn, u ∈ Rm, y ∈
Rny , Ak ∈ Rn×n, Bk ∈ Rn×m, affine term Dk ∈ Rn and the sensors constant matrix C ∈ Rny×n.
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Fig. 3.6 – Graphic representation of fuel and electrochemical power evolution w.r.t. the control variable;
α and β are the coefficients that define the fuel consumption approximation; Bk and Dk define the SOC
linearized model

Let ŷ(k + i) denote the ith step prediction of the output from the current state. Then:

Yk =
[
ŷ(k + 1) ŷ(k + 2) · · · ŷ(k +Np)

]T (3.22)

Uk =
[
u(k) u(k + 1) · · · u(k +Nc − 1)

]T (3.23)

whereNp is the prediction horizon andNc ≤ Np is the control horizon and it represents the dimension of
the optimization problem. In some cases, it is preferred to enforce the constraints only at the beginning
of the prediction, the purpose of the rest of the prediction being only to maintain a proper direction for
the future trajectory. The output evolution from the current state xk, under the influence of the future
commands can be expressed into a compacted form:

Yk = Φkxk + ΨkUk +Wk (3.24)

with

Φk =


CAk

CAk+1Ak
...

C
Np−1∏
i=0

Ak+i

 (3.25a)

Ψk =


CBk 0 · · · 0

CAk+1Bk CBk+1 · · · 0
...

C
Np−1∏
i=1

Ak+iBk C
Np−1∏
i=2

Ak+iBk+1 · · · C
Np−1∏
i=Nc

Ak+iBk+Nc−1

 (3.25b)
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Wk =


C 0 · · · 0

CAk+1 C · · · 0
...

C
Np−1∏
i=1

Ak+i C
Np−1∏
i=2

Ak+i · · · C




Dk

Dk+1
...

Dk+Np−1

 (3.25c)

where Φk ∈ RnyNp×n,Ψk ∈ RnNp×mNc ,Wk ∈ RnyNp×1.
The predictor has therefore a linear affine structure and under controllability assumptions, the rank

of these matrices is full. With these notations, a quadratic cost function is introduced, which minimizes
over a finite horizon the tracking error between the output Yk and the setpoint Yrefk (that can be time-
varying, based on the anticipatory data), as well also the command effort Uk. Moreover, constraints on
output and command are imposed:

min
Uk

Jk = (Yk − Yrefk)TQk(Yk − Yrefk) + UTk RkUk (3.26)

s.t.

{
Ymink ≤ Yk ≤ Ymaxk
Umink ≤ Uk ≤ Umaxk

(3.27)

where Qk ≥ 0, Rk ≥ 0 are matrix of penalties for the tracking error and the command, respectively,
usually diagonal.

Then the problem (3.26) can be formulated into a quadratic programming (QP) framework:

min
Uk

1

2
UTk HkUk + F Tk Uk (3.28a)

s.t.

{
AineqUk ≤ bineq
AeqUk = beq

(3.28b)

where Hk = ΨT
kQkΨk +Rk > 0 and F Tk = (Φkxk +Wk − Yrefk)T QkΨk.

Note that the cost function can also be expressed as an `1 norm, transforming the optimization into a
Linear Programming (LP) problem.

min
Uk

F Tk Uk (3.29)

s.t.

{
AineqUk ≤ bineq
AeqUk = beq

(3.30)

Traditionally, the standard choice is the QP formulation, due to its smoother command in comparison
to the bang-bang control usually provided by LP [158]. Moreover, even in the unconstrained case, the
LP formulation makes the structural analysis more involved as long as it is not reducible to the linear
feedback closed-form [159].

The most common tool for stability analysis remains the Lyapunov theory, which proved its effec-
tiveness for LQR (Linear Quadratic Regulator) control and its closely related MPC formulation [129]. In
[160] the stability for a receding horizon controller is proven for an infinite horizon, under the assump-
tion of controllability. The analysis is extended and it is shown that global asymptotic stability can be
assured for a finite prediction horizon Np, if this is large enough, under assumptions on stabilizability
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and feasibility. With respect to the present formulation we note two features: on one side the fact that
the model being time-varying, the MPC solution (3.28) will be linear time-variant itself and the rate of
variation needs to be accounted for in the closed-loop analysis. Secondly, the control formulation is that
of a tracking problem, with the reference trajectory known on a relatively short horizon, thus placing the
closed-loop analysis on the ground of economic performance and less on the stability guarantees.

2.4.2 Application to the torque split problem

With the prediction model and the cost function defined in the previous sections, it will be shown
how the energy management problem can be formulated into a standard LTV MPC form, introduced
above. For a better understanding, the definitions from (3.7) are recalled here:

Pf (k) = HLV ṁf (ωice(k), Tice(k)), Pe(k) = −Qmax∆SOC(k)OCV (k)

and with the SOC LTV model (3.14), the dependence between Pe and the control variable u can be
expressed as:

Pe(k) = −QmaxOCV (k)(Bkuk +Dk) (3.31)

The minimum value of the electrochemical power Pemink corresponds to the maximum value of the
control variable Umaxk as depicted in Fig. 3.6 and hence Pemink = QmaxOCV (k)(BkU

max
k + Dk).

Therefore, with the PWL consumption model (2.27):

ṁf = αj(ωice)Tice + βj(ωice), j = 1 . . . Npart

as well as the above definitions, the cost function (3.20) can be written as:

min
Uk

Nmpc∑
i=1

H2
LV (αji(ωice)Uk(i) + βji(ωice))

2 + λ2
kQ

2
maxOCV

2
k (BkiUk(i)−BkiU

max
k (i))2 (3.32)

where the index ji denotes the fuel consumption region j (2.27) for the ith element in the array Uk and
Umaxk is an array with the control upper bounds. This can be formulated as a QP problem (3.28), with:

Hk = ᾱ2
k + q2

kB̄
2
k (3.33a)

Fk = ᾱkβ̄k − q2
kB̄kU

max
k (3.33b)

where qk = λk
1

HLV
QmaxOCVk, B̄k = diag (Bki),

ᾱk =


αj1 (ωicek) · · · 0

...
. . .

...

0 · · · αjNmpc−1

(
ωicek+Nmpc−1

)
 (3.34a)

β̄k =
[
βj1 (ωicek) · · · βjNmpc−1

(
ωicek+Nmpc−1

)]
(3.34b)

If penalties on torque variations are also considered (for drivability improvement, for instance), the
relations (3.33) are updated as below, with R∆k

≥ 0 the matrix of penalties:

Hk = ᾱ2
k + q2

kB̄
2
k +DT

∆R∆k
D∆ (3.35a)

Fk = ᾱkβ̄k − q2
kB̄kU

max
k +DT

∆R∆k
Uk0 (3.35b)
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where:

∆Uk = D∆Uk + Uk0 (3.36a)

UTk0 =
[
−uk0 0 . . . 0

]
(3.36b)

D∆ =


1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0

. . .
0 0 0 · · · −1 1

 (3.36c)

2.4.3 Constraints formulation and SOC balance problem

For a charge-sustaining operation mode, a particular attention must be paid to SOC balance, i.e. final
SOC value should coincide with the value at the start of the trip. The integration of this objective remains
largely an open problem, due to the differences between simulation and real-driving operation. For
example, in [142] is stated to be “justified mainly as a way to compare the results of different solutions
by guaranteeing that they reach the same level of battery energy. In real vehicles, there is no need to have
a fixed battery SOC at the end of each cycle but only to keep it always between two boundary values”.
In [37] it is also mentioned that final SOC value does not necessarily need to be defined w.r.t. to the
starting value, but chosen such that it verifies conditions related to the battery health. Therefore, the SOC
balance is especially useful in simulation, but in practice this constraint can be relaxed, as the interest is
on maintaining SOC within a certain range (in average).

The proposed strategy allows to handle both situations: simulation and real-driving. Instead of adapt-
ing the tuning in order to avoid important deviations from the starting value SOC0, distance-varying
limits for SOC are introduced, as expressed below:

SOCmin(k) = SOC0 − (SOC0 − SOCmin) e
1− 1

1− dist(k)
distTot

SOCmax(k) = SOC0 + (SOCmax − SOC0) e
1− 1

1− dist(k)
distTot

(3.37)

The idea is to constrain SOC to gradually approach its initial value as the ratio between the actual
distance and the total distance increases and, at the same time, allowing it a wide range of variation in
the first part of the trajectory (SOCmin, SOCmax represent the physical limitations of the battery which
were set at 20% and 90%, respectively). Moreover, the trajectory can be adjusted for a given final SOC
value. However, this implies the knowledge of the trip distance, which cannot always be available. In
this case, a pre-defined reset distance can be introduced, as for the red curve in Fig. 3.7. In simulation, it
can be set to 5 or 10 km, but in real-driving situations this value could be chosen with respect to driver’s
history data.

These constraints do not influence the algorithm design, they only provide a mechanism to address
the SOC balance problem. Moreover, relaxations can be included in the formulation of boundaries (3.7).

For α ∈ (0, 1), the exponential e
1− 1

1−α dist(k)
distTot will determine a slower convergence (red curve in Fig.

3.8) whereas e
1− 1

1
α− dist(k)

distTot will enlarge the domain between the boundaries (black curve in Fig. 3.8).
In addition to SOC limitations (3.37), the powertrain is subject to several physical constraints: engine

torque upper bound, as depicted in Fig. 1.11, electric machine torque and power limits as in Fig. 1.12,
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Fig. 3.7 – SOC limits for 2 cases: total distance known and reset distance fixed at 10 km, respectively

which depend on the operating points ωice and ωem, respectively. In same cases, new constraints may
need to be enforced by external systems, such as the aftertreatment: for the catalyst warm-up the engine
speed is adapted, changing therefore the upper and lower torque limits.

The constraints can be classified into 3 main categories:

- reliability: physical constraints of the components

- emissions and OBD (On-Board Diagnosis) [161]

- driveability: engine overboost, which allows dynamic torque limitations that exceed the static ones

Here, only the reliability constraints are considered and for a time step k these time-varying limita-
tions can be expressed as:

Tminice (ωice(k)) ≤ Tice(k) ≤ Tmaxice (ωice(k)) (3.38a)

Tminem (ωem(k)) ≤ Tem(k) ≤ Tmaxem (ωem(k)) (3.38b)

Pminem (ωem(k)) ≤ π

30
ωem(k)Tem(k) ≤ Pmaxem (ωem(k)) (3.38c)

SOCmin(k)− εk ≤ SOC(k) ≤ SOCmax(k) + εk (3.38d)

where εk is a slack variable and it is introduced to relax the constraints, in order to avoid infeasibility
of the optimization problem. This can especially occur toward the end of the trip, where the range of
SOC variation is considerably narrow. Moreover, the system is inherently bounded and it is not needed
to enforce hard stability constraints.
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Fig. 3.8 – SOC limits relaxation for α = 0.85

3 Analysis of the control law

3.1 Tuning

The penalty factor λ has a tremendous impact on the performance and its tuning encounters the same
challenges as for the ECMS, i.e. dependence on the drive cycle characteristics. At the beginning of
the chapter a summary of tuning methods for the equivalence factor was introduced. Here, an approach
similar to (3.8) is chosen, but with an adaptation of the feedforward term λ0. If this term is set constant,
the tuning depends strongly on the initial guess, which cannot be suitable for all drive cycles. In [162]
an adaptation based on an auto-regressive moving average (ARMA) model was proposed

λ(k) =
λ(k − 1) + λ(k − 2)

2
(3.39)

However, this does not take into account the future characteristics of the drive cycle. Here, an adap-
tation that exploits the availability of predicted data is introduced, as detailed below.

Given the lower and upper bound of the command at each predicted step i, the solution explored in
the present study is to express λ as a ratio of the 2 powers variations between these bounds, as defined
below, where k is the optimization step:

λk,i = −
Pf (uk,i)− Pf (uk,i)

Pe(uk,i)− Pe(uk,i)
, for Tw(k + i) ≥ 0 (3.40)

which guarantees λk,i > 0, due to the characteristics in Fig. 3.6.
However, instead of using a pointwise penalty, an average-based expression can be introduced over

an horizon Nλ, which can be greater or equal to the horizon used for the MPC problem:

λk0 =
1

Nλ −N stop
λ

Nλ∑
i=1

λk,i (3.41)
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where λk,i is given by (3.40) and N stop
λ is the number of predicted steps of vehicle standstill.

λk = λk0 + kp (SOCsp − SOCk) (3.42)

where SOCsp is the SOC setpoint, which can be set constant or generated by exploiting data from the
navigation system, as shown in Fig. 3.9. It can be observed that the control problem is structured as
a two-layer optimization: the upper layer handles the tuning and it exploits the navigation data over an
horizon Nλ to calculate the feedforward component of λ, which will be next used by the MPC controller
in the cost function. This layer handles the torque split and the stop & start (S&S), as will be detailed in
the next section; the engine torque reference and S&S command are sent to a powertrain supervisor, that
will process the commands (engine idle speed control, for instance) and calculate the torque and gearbox
setpoints for the vehicle. In addition to the driver request and preview data over an horizon Nmpc, the
MPC controller receives as well the on-board estimated SOC and engine torque.

The expression contains therefore 2 terms: a feed-forward component (λk0) and a feedback part (the
proportional SOC control). The purpose of the latter is to adjust the penalty factor with respect to an
SOC setpoint:

- if the trajectory is below the setpoint, λ increases, thus penalizing more the use of the battery

- if the trajectory is greater than the reference, λ will diminish and this will correspond to a greater
use of the battery.

In this study, the setpoint was chosen constant and equal to the initial value. Again, the goal is not
to track a certain SOC reference, but to allow the trajectory to freely vary and to avoid overcharge or
discharge.

The braking phases need to be included in the average calculation, but in this case λk,i can no longer
be expressed as a ratio of differences, because these modes are pre-imposed: the maximum possible
energy is recovered and the rest is dissipated in the friction brakes. Therefore, a particular expression is
adopted in the present study:

λk,i =
P idlef

P regene (k + i|k)
, for Tw(k + i) < 0 (3.43)

where P idlef = HLV ṁ
idle
f and P regene (k + i|k) is the predicted electrochemical power obtained by

regenerative braking.
With this formulation λ will decrease if braking phases are anticipated. Thus, the use of the electric

motor is encouraged if it is possible to compensate the electric consumption by regenerative braking.
A choice for the proportional factor kp can be made such that λk remains positive:

λk0 + kp (SOCsp − SOCk) ≥ 0 (3.44)

For worst-case scenario i.e. SOC = SOCmax, this leads to:

kp ≤
λk0

|SOCsp − SOCmax|
(3.45)

Usually, SOCsp ∈ [40%; 60%] and λk0 ∈ [2; 4]QmaxOCVHLV
, which gives:

kp ≤ 2 (3.46)
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Fig. 3.9 – Control structure with a high-level tuning block

Choice of the horizon in the tuning procedure

The feed-forward component should encapsulate the trade-off between general tendency and ag-
gressiveness of the drive cycle along a receding window. The longer the horizon Nλ, the smoother the
feed-forward component becomes. MPC performs a local optimization and therefore, λ should be able
to adapt fast enough with respect to drive cycle aggressiveness. In [6], a measurement of traffic and
driver aggressiveness based on jerk periodograms has been introduced, see Fig. 3.10. The periodogram
for a signal y is an estimate of the spectral density and it is given by the squared modulus of the Discrete
Fourrier Transform [163]:

p(f) =
1

N

∣∣∣∣∣
N∑
t=1

y(t)e−i2πft

∣∣∣∣∣
2

(3.47)

Here, the periodogram of the wheel power will be used to analyze the aggressiveness information
incorporated into λ, by using the frequency cumulative content for different prediction horizon values as
in the expression below, where p stands for periodogram.
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Fig. 3.10 – Jerk periodogram for LA92 cycle; low frequencies correspond to traffic-related aggressive-
ness (unavoidable situations) and high frequencies indicate the driver characteristics [6]

r(Nλ) =

∫ 1
2
fNλ

f=0 p(f)df∫ fs
2
f=0 p(f)df

(3.48)

where fs is the sampling frequency (here: fs = 1Hz), fNλ = 1
Nλ

. This definition implies that for
Nλ = 1s, the ratio is 1, that is, all drive cycle variations are included because no averaging is performed.
If Nλ increases, the ratio diminishes due to smoothing. This can be observed in Fig. 3.11, where the
evolution of the aggressiveness indicator with respect to the prediction horizon is depicted for several
drive cycles. For values greater than 60s, the smoothing is sufficiently significant for all the scenarios
considered. In certain cases, such as Artemis urban and traffic jam, the loss of aggressiveness information
occurs at even lower horizons and therefore, the prediction horizon choice is drive cycle dependent.

The presence of a road grade may lead to the need of adapting the parameters that appear in the
formulation of the tuning factor λ: Nλ (changing therefore the feedforward component) or SOCsp,
which defines the feedback part, as shown in Fig. 3.12. A simple example is analyzed in Fig. 3.13,
described by a constant speed phase with variable slope: for the first half the road grade is set to 5% and
for the other half: -5%. The frequency content of the wheel power periodogram is depicted in the third
plot for the case with a flat road (blue line) and with slope (red line), respectively. This simple benchmark
points to the need of adaptation for Nλ. An alternative would be to reduce the value of SOCsp before
the phase with negative slope, anticipating therefore the energy recovery. A comparison between these 2
strategies will be made in Chapter 4, dedicated to simulation results.

3.2 Influence of PWL approximation for fuel consumption

As mentioned in Chapter 2, the fuel consumption map is partitioned in several torque-dependent
regions to which a first order polynomial approximation is associated. As introduced earlier, the cost
function includes the fuel consumption and therefore parameters αj and βj from (3.34) need to be de-
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Fig. 3.12 – Tuning parameters (SOCsp and Nλ) adaptation w.r.t. slope
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fined, i.e. a consumption region j needs to be selected. A drawback of such piecewise approximation
approach is that the physical constraints of commands usually span several regions.

Let k be the current optimization step, i the index of a command from the vector Uk (the output
of the MPC controller), npwl a vector with the consumption regions associated to each command from
Uk, T partice a vector with the torque values that demarcate the consumption approximation regions and
Umink , Umaxk vectors that contain the lower and upper limits, respectively, of the commands.

The first step is to verify if for each command Uk(i) a unique consumption partition j can be iden-
tified. The uniqueness can only be seldom encountered, the admissible torque interval for a command
usually spans several partitions, but it is a possible case for approximations with a sparse division. The
principle of selection can be expressed readily as:

if ∃j s.t .
[
Umink (i);Umaxk (i)

]
⊆
[
T partice (j);T partice (j + 1)

]
then npwl(i) = j, j = 1 . . . Npart

(3.49)

where T partice (j), T partice (j + 1) represent the torque limits for the jth region, as in (2.27).
If this condition is not satisfied, the choice of the consumption region relies mostly on the current

engine torque value. Let n0 denote the region that corresponds to this torque value. Then:

if
[
T partice (n0);T partice (n0 + 1)

]
∩
[
Umink (i);Umaxk (i)

]
6= ∅

then npwl(i) = n0

(3.50)

Finally, if no intersection is found between the torque limits and the current region, a neighbor
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interval is selected. This situation can occur for instance when the current engine torque is very high and
the operating point at step i has an average upper torque limit i.e. T partice (n0) > Umaxk (i).

npwl(i) = j, j = 1 . . . Npart

min
j
|n0 − j|

s.t.
[
T partice (j);T partice (j + 1)

]
∩
[
Umink (i);Umaxk (i)

]
6= ∅

(3.51)

New limits are thus imposed:

Umink (i) = max
(
Umink (i), T partice (npwl(i))

)
Umaxk (i) = min

(
Umaxk (i), T partice (npwl(i+ 1))

) (3.52)

After each optimization step, a verification is performed for the commands whose physical limita-
tions span several consumption regions. If the command i lies within its defined limits (3.52), no action
is taken. If saturation occurs, npwl(i) is shifted toward left or right, depending on whether the lower
or the upper bound was activated, and a new optimization is launched with this update. The procedure
is repeated until a chattering effect is encountered, as in (3.53), or a maximal number of iterations is
reached.

U
(iter)
k (i) =

{
U
min,(iter)
k (i), n

(iter)
pwl (i) = n

(iter−1)
pwl (i) + 1

U
max,(iter)
k (i), n

(iter)
pwl (i) = n

(iter−1)
pwl (i)− 1

(3.53)

where the superscript iter denotes the iteration number.

4 Stop-start inclusion: a model-based activation

Engine Stop&Start (S&S) is a functionality that automatically shuts and restarts the engine, avoiding
thus unnecessary idling. If handled properly, it can bring an additional fuel gain up to 5% [164] and it is
especially useful in urban traffic, as a result of frequent stops due to red lights or traffic jams. It is applied
to a stationary vehicle, but enhanced stop-start systems allow extensions for speeds > 0 km/h too, but
for safety reasons, they need to be equipped with an additional energy storage (in case of failure of the
primary battery) [165].

The most encountered stop-start strategy is a rule-based method, largely adopted by car manufactur-
ers [166]: for a manual transmission, the engine is stopped when the transmission is disengaged and the
clutch pedal released, the restart being performed at clutch pedal activation; for an automatic transmis-
sion, the only control is the brake pedal, technique referred to as stop-in-drive, because the driveline is
still engaged; the restart occurs at brake pedal release [167].

The simplicity of this rule-based strategy comes with the cost of fuel-inefficient or unwanted stops
from a drivability perspective. An engine start implies an electric consumption (torque transfered to
the engine in order to accelerate it) and an additional injected fuel to build the wall film in the intake
manifold [114], in the case of a port injection. Therefore, an equivalent fuel cost associated to an engine
restart must be introduced. It is usually defined in seconds of idling tidle i.e. instead of keeping the
engine idling for tidles, it is preferable to switch it off. This value depends mostly on the engine type
(SI or CI) and displacement, as well as the transmission type (for instance, automatic transmissions have
lower tidle values than manual transmissions).
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Improvements can be made by considering the cost of the engine restart and data about the driver’s
behavior, as in [168] where a machine learning-based strategy is proposed: the reinforcement learning.
This method is based on the interaction of agents with their environment, in order to minimize a cost or to
maximize a reward, the goal being therefore to optimize their performance. For the stop-start problem,
3 inputs are considered: vehicle speed, accelerator pedal position and brake pressure. A comparison
is made with Ford rule-based strategy, which is similar to the one briefly introduced earlier and an
improvement up to 12% is observed.

For an HEV, S&S presents an even greater interest, the engine can also be stopped during electric
traction phases and hence, at higher speeds. Similar to the torque split problem, the strategies can be
classified into heuristic and model-based. In [169] a fuzzy logic controller is proposed, which receives
as inputs the required torque, the electric machine speed, the SOC value, the time after an engine start
or stop and the temperature of the catalytic converter. Therefore, emissions are considered in addition
to the fuel consumption reduction. In [74] a rule-based strategy, modeled with a finite state machine, is
proposed for a power-split HEV. The focus is to improve the engine efficiency, by exploiting the multi-
mode functioning of the power-split configuration.

Regarding the model-based strategies, there are two main approaches: introduction of a binary deci-
sion variable in the optimization procedure or separation into a two-layer optimization. The former can
be encountered in [31], where the problem is formulated as a Mixed-Integer Quadratically Constraint
Linear Program (MI-QCLP) and implemented with the help of a dedicated solver; [155] uses a nonlin-
ear model, with an accurate description of the engine start-up and crank-to-idle phenomena and a cost
function that minimizes the consumption over an horizon, with a SOC correction term and ICE restart
cost penalty; the problem is solved with Matlab fmincon function, which is also the choice for [156],
where the problem is formulated into a nonlinear programming (NP) framework. The advantage of this
approach is the simultaneous handling of the two problems (torque split and engine ON/OFF), but in the
same time the solver may be too computationally demanding for real-time applications.

The two-layer optimization is encountered on different forms: in [170] a constrained LP is used
to compute the power distribution at the top level, whereas the engine operating point optimization is
performed at a lower level, which includes S&S. Time constraints related to the duration to start the
engine and to bring it to a specific operating point, as well as the time to declutch and to shut off the
engine, are also considered; the problem is solved with a MILP (Mixed-Integer Linear Programming)
solver. In [30] the upper level uses dynamic programming for engine ON/OFF decision and gear choice,
whereas the lower level uses convex optimization to provide the torque split. The MPC benefit for
stop-start strategy has been analyzed in [68] for a city bus, where the torque-split is also handled as a
separated, low-level problem. In [73] a LTV-MPC framework is introduced for the energy management
of a power-split architecture, where the engine speed is an additional optimization variable and therefore,
it includes by default the S&S strategy. The drawback of this approach is that the cost of an engine restart
is not considered and the variation of torque limitations w.r.t. speed is not explicitly addressed.

In our work, the interest is to introduce new functionalities without essentially changing the control
structure, such as the number of control variables or the type of solver, the request being allowed by MPC,
due to its design principle. The MPC advantage of calculating a sequence of commands can provide, via
the complete finite-time optimal-control solution, short-term information about the duration of the phases
where the engine can potentially be stopped. The proposed approach is to generate a stop-start command
based on the analysis of the MPC control sequence, without introducing a binary optimization variable
in the problem, as will be detailed below.

Let tidle be the number of seconds of idling which reflects the cost of an ICE restart, cton the number
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Fig. 3.14 – Control structure with S & S included

of steps since an ICE restart and ctoff the number of steps since an ICE stop. Then at step k the engine
is shut off for:

Uk (1 : Nstop) ≤ T thrice (3.54a)

cton > Nstart (3.54b)

where

Nstop =
tidle

∆topt
(3.55)

and T thrice is a threshold value for ICE torque below which the stop of the engine is preferable over the
considered length of the prediction horizon. The condition (3.54b) assures that the engine is not stopped
shortly after a restart decision. If the engine is already stopped, a restart is demanded if the first calculated
command is greater than T thrice .

Engine restart is not an instantaneous event and for speed tracking improvement, an anticipation is
suitable. Here, as a contribution, a Non- step anticipation for ICE restart is introduced: if a sequence of
commands with length Nstop from position 1 + Non exceeds the threshold torque value and the engine
has already been stopped for at leastNstop steps, a restart command is activated. For the case considered,
with an MPC sampling time of 0.5s, Non was set to 1.

Uk(1 +Non : 1 +Nstop) > T thrice (3.56)
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In addition, all stop conditions are subject to powertrain inhibition functions, where safety require-
ments are formulated (SOC level, fuel temperature, altitude value, aftertreatement etc). This stop-start
strategy is described by the diagram in Fig. 3.15.

Fig. 3.15 – Schematic representation of the S & S strategy

The PWL approximation introduced in the previous section is suitable for this problem because it
allows the demarcation of the low torque region, where T thrice is included: T partice (1) ≤ T thrice ≤ T partice (2).
The first step is to identify the sequences of commands with a length of at least Nstop for which the
first region was selected for the fuel consumption approximation. Then, for these sequences, penalties
on torque variations are introduced through the matrix R∆k

, as it appears in formulation (3.35) of the
optimization criterion.

UTk =
[
Uk(1) Uk(2) . . . Uk(i) . . . Uk(j)

≥ Nstop
0 ≤ Uk(i : j) ≤ T partice (2)

↓
R∆k

(i+ 1 : j, i+ 1 : j) 6= 0

. . . Uk(N)
]

R∆k
≥ 0 matrix of penalties

T partice (2) upper limit of the first torque region

R∆k
(i+ 1 : j, i+ 1 : j) 6= 0, for

{
j − i ≥ Nstop

npwl(i : j) = 1
(3.57)

The purpose of this strategy is to force the entire sequence to either go toward zero (and the engine
to be stopped) or to reach the upper limit of the interval and then to commute toward higher values. The
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cost of an ICE restart is implicitly handled by the length of the sequence, Nstop. If the engine has been
stopped for ctoff < Nstop, then penalties are introduced for the first Nstop − ctoff commands, in order
to maintain the calculated torque close to zero and hence, the ICE stopped:

R∆k
(1 : Nstop − ctoff , 1 : Nstop − ctoff ) 6= 0

ctoff < Nstop
(3.58)

5 Coasting functionality

Coasting, sometimes also referred to as free-wheeling, is a special functional mode in which the
vehicle motion is described only by resistive forces, no pedal being pressed. During coasting, the engine
is usually disengaged, in order to avoid the friction torque. In some cases however, an additional negative
torque from the engine can be useful, when a fast decrease of vehicle speed is demanded. If the engine
is disconnected from the wheels, it can either be on idle or stopped.

One of the first papers which addressed the benefit of coasting (with engine stop) in terms of fuel
consumption for conventional vehicles is [164]. Two types of drive cycle were considered: NEDC (hard
deceleration) and FTP-75 (small deceleration). Although the NEDC in its initial form is not represen-
tative for coasting, a tolerated speed deviation allows early coasting initiation during phases of constant
reference speed. It was shown that a gain up to 6% can be obtained, whereas for FTP-75, the best-case
scenario provides a gain of 10%.

In [171] the performance of coasting was analyzed for constant speed phases on highway, with slope
information included. The focus is on conventional vehicles and two main topics are addressed: coasting
initiation and influence of boost acceleration before coasting. The performance of HEV is also tackled
for a downhill road profile and results showed that coasting is more fuel-efficient than energy recovery.

Pulse and glide (PnG) [172], [122] is a method that uses the vehicle inertia as an energy buffer:
the vehicle accelerates more than necessary instead of cruising, and thus, the engine operating point is
shifted toward a more efficient zone. The consequent additional fuel consumption is made profitable due
to the vehicle extra kinetic energy that allows a longer free-wheeling time, with the engine stopped. This
strategy implies an interference in the accelerator pedal displacement, which is out of the scope of the
present study, where only pedal release is concerned. It is assumed that once the driver is pressing the
pedal, he/she is following the reference speed (in simulation, there will be a driver model implemented).
A supervisory controller can display a message to suggest coasting initiation and under the assumption
that the driver follows the indication, the functionality is activated.

In this section, we aim to show that model-based control design can integrate readily this supplemen-
tary feature with respect to the predictive energy management and therefore, an analysis of the coasting
functionality and its performance for an HEV is introduced. First, a framework for the scenarios where
coasting is potentially preferable over regeneration needs to be defined. Second, a strategy that de-
termines coasting acceptance in terms of speed deviation and position, as well as the satisfaction of
time-dependent constraints will be designed. A method to determine coasting initiation and duration is
also detailed. The analysis considers exclusively coasting with engine stop.

5.1 Motivation: basic case study

In order to motivate the coasting, a basic case study is considered, described by a constant speed,
followed by a decrease and shortly afterwards, a new increase phase, as the one depicted in Fig. 3.16
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(black, dashed curve). Two scenarios are handled: basic coasting (red) and e-coasting (blue), conceptu-
ally illustrated in the same figure. The latter is defined by free-wheeling with energy recovery and it can
be preferred if the vehicle cannot be slowed down fast enough by basic coasting, as it will be presented
in the next example. If coasting is initiated around t = 82s , after 21s the vehicle will reach the new
reference speed from the acceleration section, without showing an important deviation from the setpoint.
The e-coasting can be started later and as a result of the energy recovery, the speed decreases faster and
thus, remains closer to the setpoint.
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Fig. 3.16 – Speed profile of a basic case study with flat road (zoom). Comparison between coasting with
recovery (blue) and baseline coasting (red)

Table 3.2 – Performance of the considered scenarios, speed from Fig. 3.16
`````````````̀Performance

Scenario
e-Coasting Coasting Baseline

Consumption [L/100km] 5.07 4.98 5.15
(final SOC) (52%) (52.05%) (51.9%)

Distance[km] 2.51 2.505 2.517
RMS error speed [km/h] 0.72 1.66 0

The coasting decision is taken at the supervisory level, as depicted in Fig. 3.17, from the exploitation
of the navigation data. This will influence the current driver request (coasting activation implies no pedal
pressed), as well as the wheel torque prediction, that will affect the value of the feedforward component
of the MPC tuning factor (λk0), as shown in Fig. 3.18. The aim of our work in this context is the
evaluation of the benefit of coasting from a fuel consumption perspective, within a MPC-based energy
management. For the subsequent analysis, the coasting decision was taken offline.

The analysis of coasting will be built on three main simulations, carried out for the three scenarios:
baseline, coasting and e-coasting for NMPC = 5s, Nλ = 10s and an initial SOC value of 50%, which
is a representative framework with respect to the prior MPC synthesis. Consumption results show that
coasting brings an improvement of almost 3%: 4.98 L/100 km vs 5.15 L/100 km, as it is obtained with
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Fig. 3.17 – Extension of the control structure from Fig. 3.14 with coasting functionality

Fig. 3.18 – Coasting initiation: details about influence on the wheel torque prediction and impact on the
λ feed-forward component
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Fig. 3.19 – Simulation results for a basic case study with flat road: coasting with recovery (e-Coasting),
coasting and baseline

the baseline strategy, for almost the same distance, whereas the e-coasting shows a less important im-
provement, as in Table 3.2. It is worth mentioning that our analysis is coherent with respect to similar
coasting analyses performed with different control strategies [171]. The evolution of engine speed, en-
gine torque and battery SOC is depicted in Fig. 3.19. We stress the fact that the red trajectory of SOC
remains constant in the interval [82; 103]s i.e. during coasting, whereas the curve in black shows a slight
decrease before increasing due to regenerative braking, followed by a new decrease in the acceleration
part. The early initiation of coasting (during the constant speed phase) allows the engine to be stopped
earlier. Moreover, due to coasting, the engine is kept shut off longer, even during the beginning of the
acceleration, thus improving the fuel gain. It can be noticed that the engine torque before coasting ini-
tiation is different in the three cases. This is due to variations in the calculation of the feed-forward
component λk0: the predicted wheel torque is different, zero during coasting and constant negative dur-
ing e-coasting. The engine torque continues to have a different evolution, even after coasting deactivation
(when λk0 is practically the same). This behavior can be readily explained by following the MPC func-
tioning: SOC trajectory changes after coasting deactivation and therefore the feedback component is
different, a straightforward implication being the fact that the prediction model is linearized at a distinct
operating point (current engine torque and SOC). The e-coasting speed trajectory is very close to the
reference speed and hence, the performance is similar too, with the major difference that the engine can
be stopped earlier.

This elementary case study demonstrated within a formal model-based strategy that a sequence of
deceleration-acceleration is disadvantageous from energy management point of view and leaving the
vehicle in free-wheeling is a fuel-friendly alternative. Coasting avoids the efficiency degradation of the
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battery use, as a result of bidirectional power exchanges (charge, followed by a discharge) and allows
the engine to be stopped for a longer time, not only during deceleration, but also at the beginning of
the acceleration phase. Coasting feasibility depends on the vehicle self-deceleration possibility: if the
resistive forces are not important enough, the free-wheeling may be too slow with respect to the real
speed. The acceptance of the solution may be defined by limits on speed deviation, constraints on
position (obstacles, stop points) and preservation of the total distance.

In Fig. 3.20 a different case study with a lower speed is introduced. This scenario details the config-
uration for which coasting may be unacceptable, in the presence of a deviation from 35 km/h to 45 km/h.
In Fig. 3.21 simulations results are depicted and Table 3.3 summarizes the performances.
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Fig. 3.20 – Speed profile of a basic low-speed case study with flat road. Comparison between coasting
with recovery (blue) and baseline coasting (red)

Table 3.3 – Performance of the considered scenarios, speed from Fig. 3.20
`````````````̀Performance

Scenario
e-Coasting Coasting Baseline

Consumption [L/100km] 5.46 5.52 5.76
(final SOC) (51.3%) (54.52%) (52.87%)

Distance[km] 0.69 0.7 0.695
RMS error speed [km/h] 0.55 2.05 0

In comparison to the previous case studies, similar observations can be made about the torque and
the SOC evolution, but there is no longer an engine stop anticipation for the coasting, the electrical
traction being initiated during the constant speed phase for the baseline strategy, too. The final SOC is
not the same for the three strategies and hence, a fair comparison between them is not possible, but it can
be noticed that e-coasting, with a slightly different speed trajectory, has the potential of improving fuel
gain.
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Fig. 3.21 – Simulation results for a basic low-speed case study with flat road: coasting with recovery
(e-Coasting), coasting and baseline

In all the case studies, coasting is deactivated later than the e-coasting and therefore, it benefits from
a fuel gain given by a reduced time of acceleration. It would be useful to compare the two approaches for
a case when they are deactivated at the same instant and the engine is stopped during the same amount
of time, as shown in Fig. 3.22 and 3.23.

The performance of each scenario is summarized in Table 3.4; the total distance is comparable,
but the final SOC is slightly different, which makes the comparison between the consumption values
a difficult task. It can be noticed that coasting and e-coasting have similar performances, with a small
advantage for the latter. The difference not being significant, it is preferable to use recovery during
coasting for the case when a fast deceleration is needed and basic coasting is too slow.

Coasting initiation influences therefore the driver demand and the speed profile, but also the MPC
tuning factor. As shown in the previous section, the feedforward tuning term λk0 is calculated as an
average over a prediction horizonNλ, by using the predicted wheel torque, which is zero during coasting.
Engine torque and consequently, SOC trajectory, are different from the baseline case even before coasting
activation, as observed for the representative case studies presented.

Next, an analysis is made for a similar speed profile depicted in Fig. 3.22 with the same coasting
strategy, but with a constant feedforward term λk0 within the MPC design. Consumption results with
final SOC are summarized in Table 3.5 and engine speed, torque, as well as SOC trajectories are depicted
in Fig. 3.24, 3.25 and 3.26. While for the first two case studies the final SOC is almost identical in the
considered scenarios, the comparison between them becomes possible. Coasting shows an improvement
of around 4% for the first case study and it outperforms e-coasting. A similar remark can be made about
the second case study, with the difference that coasting will be conditioned in this case by the feasibility
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Fig. 3.22 – Basic case study, with coasting and e-coasting deactivated at the same time; speed profile

Table 3.4 – Performance for the considered scenarios, speed from Fig. 3.22
`````````````̀Performance

Scenario
e-Coasting Coasting Baseline

Consumption [L/100km] 5.23 5.28 5.78
(final SOC) (55%) (55.71%) (56.7%)

Distance[km] 0.85 0.843 0.846
RMS error speed [km/h] 1.5 1.54 0

Table 3.5 – Normalized consumption [L/100km] and final SOC [%] for scenarios Fig. 3.16 and Fig.
3.20; constant feedforward tuning factor λk0

`````````````̀Case study
Scenario

e-Coasting Coasting Baseline

Speed from Fig. 3.16
4.93 4.8 5.02

(48.57%) (48.54%) (48.63%)

Speed from Fig. 3.20
5.28 5.12 5.44

(48.47%) (48.77%) (48.4%)

Speed from Fig. 3.22
5.14 4.71 5.64

(50.57%) (49.13%) (51.94%)

from speed deviation perspective. The third case, whose purpose was to evaluate the performance when
coasting and e-coasting are deactivated at the same instant, leads to a slightly different final SOC for
the three scenarios, a comparison between them being less accurate. However, it can be observed that
coasting exhibits a greater consumption gain due to a longer engine stop phase, as in Fig. 3.26. The
e-coasting in this case does not shut-down the engine earlier, as in Fig. 3.23, because the tuning factor
no longer decreases as a result of the energy recovery anticipation, but remains constant.
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Fig. 3.23 – Basic case study, with coasting and e-coasting deactivated at the same time; simulation results
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Fig. 3.24 – Simulation results for case study Fig. 3.16 with constant feedforward tuning factor λk0
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Fig. 3.25 – Simulation results for case study Fig. 3.20 with constant feedforward tuning factor λk0
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Fig. 3.26 – Simulation results for case study Fig. 3.22 with constant feedforward tuning factor λk0
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5.2 Problem formulation and proposed solution

In [171] an analytical approach was introduced for coasting initiation, by writing the energy balance:
work and kinetic and potential energy variation. The resistive forces expression however does not contain
the viscous loss, only the dry friction and aerodynamic drag. Moreover, only the constant speed scenario
is considered and therefore it is enough to evaluate speed deviation at the end of the coasting in order
to decide the acceptance of the operation. In a general framework, with a variable reference speed as
presented in the previous section, the speed evolution during coasting needs to be explicitly considered
at each time step or position. In [173], analytical expressions for speed and distance as functions of
time were provided and remain valid in the case of the present MPC design framework. Following the
notations from the aforementioned paper, free-wheeling equation can be expressed as:

− δ

g

dv

dt
= a+ bv + cv2 (3.59)

δ = 1 +
nIw + Id
mvR2

w

(3.60)

where n - number of wheels, Iw - inertia of one isolated wheel, Id - driveline inertia and a, b, c represent
the coefficients of the resistive forces from (1.1), divided by the vehicle weight mvg. The following
calculations are valid under the assumption that these coefficients are constant, which implies a road
with piecewise-constant slope.

If expression (3.59) is inverted, then: −g
δdt = 1

a+bv+cv2dv. The coasting time can therefore be
directly extracted:

− gc

δ
T =

∫
1

a
c + b

cv + v2
dv (3.61)

Let:

B =
g

2δ

√
4ac− b2, h =

gb

2δ

β = arctan

(
1

B

(g
δ
cv + h

)) (3.62)

The nominator can be expressed as:

a

c
+
b

c
v + v2 =

(
v +

b

2c

)2

+

(√
4ac− b2

2c

)2

By using: ∫
1

(x+ a)2 + b2
dx =

1

b
arctan

x+ a

b

relation (3.61) becomes:

−gc
δ
T =

2c√
4ac− b2

arctan
v + b

2c√
4ac−b2

2c

With the notations introduced earlier, the coasting time Tcoast between speed v1 and v2 is given by
Tcoast = β1−β2

B .
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By noting T = Tcoast − t, the speed evolution in time in the new coordinates is:

v(T ) =
δ

gc
[B tan (BT + β2)− h] (3.63)

which gives for t = 0, v = v1 (speed at the start of coasting) and for t = Tcoast, v = v2 (speed at the
end of coasting).

The evolution in time of the position can be determined by integrating the speed expression. By
using

∫
tanxdx = − ln(cosx), we have:

d(T ) =
δ

gc

(
ln

cosβ2

cos (BT + β2)
− hT

)
(3.64)

In the current MPC framework, the decision of coasting is taken after the evaluation of a cost function
that includes the speed deviations in time. This maximizes the coasting time Tcoast and ensures that
at the end of the coasting, the vehicle speed is close to reference speed (and thus, avoiding a strong
compensation from the driver model, that will result in an additional fuel consumption). Two approaches
are proposed. Let tk1 , tk2 denote the moment of coasting start and stop, respectively and therefore,
tk2 = tk1 + Tcoast

∆topt
; vref the reference speed and ∆v (tk) = v (tk)− vref (tk).

The first cost function has the following expression:

J1 (tk1 , tk2) = α∆v(tk2)2 + β
1

T 2
coast

+
1

Nt

tk=tk2
−1∑

tk=tk1

∆v(tk)
2 (3.65)

where Nt = tk2 − tk1 − 1.
The second cost function considers the cumulative speed error during coasting, relative to the ref-

erence speed, but not for the final speed deviation, too. The purpose is to assign important penalties to
variations at lower speeds (a deviation from 90 km/h to 80 km/h is acceptable, whereas from 50 km/h to
40 km/h may not be possible), but at the end of the coasting, it is necessary to have a speed as close as
possible to the reference, regardless of its order of magnitude.

J2 (tk1 , tk2) = α|∆v(tk2)|+ β
1

Tcoast
+

1

Nt

tk=tk2
−1∑

tk=tk1

∆v(tk)
∆v(tk)

vref (tk)
(3.66)

Differences between the results given by the two cost functions are depicted in Fig.3.27 and 3.28. It
can be noticed that the second cost function avoids coasting initiations at low speeds (Fig. 3.27, upper
left corner) as a result of using the relative error.

Cost function evaluation

Coasting initiation relies on three aspects:

• start of coasting (tk1)

• end of coasting (tk2)

• validation of the solution acceptance (value of Ji, i ∈ {1, 2})
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Fig. 3.27 – Comparison between the speed profiles given by J1 and J2; speed profile - WLTC
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Fig. 3.28 – Comparison between the speed profiles given by the 2 cost functions; speed profile - Artemis
highway
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Given a road preview of length Ncoast, the first step is the detection of potential coasting initiation.
As shown in the previous subsection, the target scenarios are described by a deceleration, followed
immediately by an acceleration. Hence, a check is performed on the acceleration sign change in 2
consecutive steps, from negative to strictly positive. The coasting should therefore be initiated the latest
at the start of deceleration (tmaxk1

). An early start is also possible, for constant speed phases or with
only minor variations. Therefore, tk1 ∈

[
tmink1

, tmaxk1

]
, where the lower bound is several steps ahead the

upper limit. The next aspect is the end of coasting, which has a lower bound given by the duration of
deceleration. Strong accelerations and decelerations are a-priori penalized.

The cost function J1 or J2 is evaluated by varying tk1 and tk2 between their lower and upper bounds.
The values of tk1 and tk2 that correspond to the minimum are retained, provided the solution is ac-
ceptable, by comparing the minimal value with a pre-defined threshold (in order to avoid large speed
deviations). The following thresholds for the cost functions have been empirically chosen:

J thr1 =

(
5

3.6

)2

+ α

(
1

3.6

)2

+ β

(
1

Tmincoast

)2

(3.67a)

J thr2 = 0.1 + α
1

3.6
+ β

1

Tmincoast

(3.67b)

For J1, this threshold value indicates that an average speed deviation of 5 km/h is preferable (ex-
pressed in m/s), whereas for J2 the term 0.1 is related to an average relative deviation. In both cases, a
final speed error of 1 km/h is desired.

A synthesis of this method is given by algorithm 1, whose notations refer to Fig. 3.29. The cost
functions J1 and J2 dependence on different starting points and coasting durations is depicted in Fig.
3.30 and 3.31, respectively. The tuning terms were chosen α = 2, β = 1 for J1 and α = 0.7, β = 0.2 for
J2. Both give similar results, the best performances being obtained for an initiation at tk1 = 120s and a
coasting duration of 13s i.e. a stop point at tk2 = 133s, as trajectory (3). Close results can be obtained
for an earlier initiation at tk1 = 118.5s, but with a reduced coasting duration of only 8s (trajectory (1))
or for tk1 = 119.5 and tk2 = 127s (trajectory (2)). A longer duration for these starting points would give
a speed trajectory with a more important deviation from the reference, due to the acceleration around
128s, which explains the increase in the cost functions for coasting times superior to 9s for early starts.
Moreover, it was noticed that for β = 0 i.e. no maximization of the coasting time, the best value given
by J1 is trajectory (2).

If the cost function evaluation at each point is to be avoided, an approximation based on Gauss
quadrature can be an alternative solution. This method is used to approximate the integral of a function,
by using a decomposition in basic functions and evaluate them at some specific points between the
domain of integration. It can provide reliable results if the initial function can be accurately approximated
by a polynomial. Therefore, if a piecewise polynomial approximation for the reference speed can be
found, then the aforementioned exhaustive research can be replaced with a faster evaluation in a reduced
number of points.

By summing up all the analysis conducted in the present section, coasting should be excluded from
the basic MPC-based energy management and its management should be handled at the supervisory
level, as in Fig. 3.17. This choice is dictated by several reasons:

- the two problems do not operate with the same prediction horizons (Ncoast > Nmpc) and therefore,
a time-scale separation needs to be performed

- coasting activation implies a modified driver behavior, which is situated by design at a supervisory
level, the MPC structure receiving as input the actual wheel torque demand and the foreseen values
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Fig. 3.29 – Example of coasting trajectories for different starting points
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Fig. 3.31 – Cost function J2 for case study from Fig. 3.29

Algorithm 1 Coasting activation

Require: Predicted vehicle speed v(k : k +Ncoast)
1: Find tk s.t. a(tk) < 0 & a(tk + 1) > 0
2: tmink2

← tk
3: tmaxk2

← k +Ncoast

4: Find min tk s.t. a
(
tk : tmink2

)
< 0

5: tmaxk1
← tk % beginning of deceleration

6: tmink1
← tmaxk1

−∆tanticip % early start of coasting
7: for tk1 = tmink1

to tmaxk1
do

8: for tk2 = tmink2
to tmaxk2

do
9: calculate J(tk1 , tk2)

10: end for
11: end for
12: Find tk1 , tk2 s.t. J(tk1 , tk2) = minJ
13: if min J ≤ J thr then
14: T predw (tk1 : tk2) = 0 % update of torque prediction
15: if tk1 = k then
16: pedal release % change in driver request
17: end if
18: else
19: no coasting initiation
20: end if
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- under the assumption that the predictive control problem had not the aforementioned hierarchical
structure (i.e. simultaneous optimization of the torque split and of the vehicle speed), the problem
would be formulated in a hands-off control framework [174]. This implies however the use of a
non differentiable cost and hence, a bi-level optimization is necessary.

6 Conclusions

In this chapter, a comprehensive model predictive control-based energy management strategy was
proposed, which handles the torque distribution and the engine stop-start feature. The problem was
constructed as a standard QP form, which allows an efficient implementation. The main contribution
from a problem formulation perspective is the introduction of the stop-start functionality without the use
of a binary decision variable, but rather as a model-based a-posteriori rule. Moreover, the calculation of
a sequence of commands allows an anticipation of engine start, for speed tracking improvement.

Another contribution is related to the tuning mechanism, which is a crucial aspect in the MPC. A
predictive adaptation of the équivalence factor was proposed, leading to a two-layer predictive control
strategy: an upper layer that handled the tuning and exploited preview information over a certain hori-
zon, and a low layer for the MPC controller that used a shorter horizon, which is suitable for real-time
implementation, as well as for reducing the impact of inaccuracies of the linearized prediction model.
A frequency analysis was employed to define an indicator of the aggressiveness content of the drive cy-
cle over the tuning horizon and providing therefore a tool to determine the horizon value that ensures a
trade-off between transient and average behavior.

Finally, an analytical method for coasting was proposed, with an evaluation for specific case studies.
The algorithm provides the time of coasting initiation and its duration, as well as an indicator of the
acceptance of the solution. This was made possible by the definition of a cost function which included
the speed deviation from the reference during coasting, with a special penalty for the deviation at the
end of coasting, in order to avoid high compensations from the speed regulator, as well as a term that
maximizes the duration of coasting.

Dans ce chapitre, une stratégie de gestion d’énergie basée sur model predictive control, qui gère la
distribution de couple et stop-start moteur a été proposée. Le problème a été construit sous une forme
QP, qui permet une implémentation efficace. La contribution principale d’une perspective formulation
du problème est l’introduction de la fonctionnalité stop-start sans l’utilisation d’une variable de décision
binaire, mais comme une règle a-posteriori à la base de modèle. De plus, la calcul d’une séquence des
commandes permet l’anticipation du démarrage moteur, pour une amélioration du suivi de vitesse.

Une autre contribution est liée au mécanisme de calibration, qui est un aspect crucial dans le MPC.
Une adaptation prédictive du facteur d’équivalence a été proposée, conduisant à une structure de contrôle
double-niveau : un niveau supérieur qui gérait la calibration, en exploitant les données prédictives sur
un certain horizon, et un niveau inférieur, avec un horizon plus court, souhaitable pour l’implémentation
en-ligne, ainsi que pour réduire l’impact des imprécisions du modèle linéarisé. Une analyse fréquentielle
a été employée pour définir un indicateur du contenu d’agressivité du cycle de conduite sur l’horizon de
calibration, fournissant donc un outil pour déterminer la valeur de l’horizon qui assure un compromis
entre le comportement transitoire et celui moyen.

Dernièrement, une méthode analytique pour le coasting a été proposée, avec une évaluation pour
des études de cas spécifiques. L’algorithme fournit l’instant pour l’initiation du coasting, sa durée et un
indicateur pour l’acceptabilité de la solution. Ceci a été rendu possible par la définition d’une fonction
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coût qui inclut l’écart entre la vitesse cible et celle pendant le coasting, avec une pénalité particulière
pour la déviation à la fin, afin d’éviter les compensations élevées du régulateur de vitesse, ainsi qu’un
terme qui maximise la durée du coasting.
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Chapter 4

Model-in-the-Loop validation

The static model and the control strategy presented in the previous chapters are
validated on a parallel mild hybrid, with a dual-clutch transmission and one electric
machine connected to the even primary shaft. Simulations are carried out for different
scenarios in a Model-in-the-Loop framework, in Matlab/Simulink environment. The
vehicle behavior is simulated by a high-fidelity model, designed in AMEsim, where slow
and fast dynamics are handled.

The simulations are performed on 4 drive cycles, where urban driving phases pre-
dominate: NEDC, FTP-75, Artemis urban and Traffic jam. The proposed energy man-
agement algorithm is organized as a two-layer predictive strategy and therefore the vali-
dation procedure will consider this separation. First, the influence of the tuning horizon
is addressed and explained through the frequency analysis introduced in the previous
chapter. Next, for a fixed tuning, the influence of the MPC horizon is analyzed, showing
that an increase leads to an improvement in the fuel gain is due to the engine stop-start.
A comparison is also made with a PMP-based method, implemented offline and which
often serves as a benchmark solution.

The control law needs real-time estimations of the battery SOC and engine torque,
which cannot always be accurately determined. Therefore, a robustness analysis with
respect to these estimations is performed. All the simulations are carried out for a fixed
sizing, but it would be useful to validate the robustness of the tuning strategy with respect
to battery size. The road grade is another important element, but standard drive cycles
do not include information about it. Here, basic case-studies with constant speed and
variable slope are considered and the main focus is on the influence of the tuning fac-
tor. A comparison between the adaptation of the feedforward component (via the tuning
horizon) and the feedback (via the SOC setpoint) is performed.

Le modèle statique et la stratégie de contrôle présentés dans les chapitres précé-
dents sont validés sur un mild hybride parallèle, avec une transmission double em-
brayage et une machine électrique connectée sur l’arbre primaire paire. Des simula-
tions ont été effectuées sur plusieurs scénarios, dans un cadre Model-in-the-Loop, dans
l’environnement Matlab/Simulink. Le comportement véhicule est simulé par un mod-
èle haute fidélité, conçu en AMEsim, qui gère les dynamiques rapides, ainsi que celles
lentes.
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Les simulations ont été testées sur 4 cycles de conduites, où les phases urbaines
sont prédominantes : NEDC, FTP-75, Artemis urbain et Traffic jam. L’algorithme
de gestion d’énergie est organisé comme une stratégie prédictive double-niveau et par
conséquent, la procédure de validation va prendre en compte cette séparation. Pre-
mièrement, l’influence de l’horizon de calibration est adressée et expliquée à travers
l’analyse fréquentielle introduite dans le chapitre précédent. Ensuite, pour une calibra-
tion fixée, l’influence de l’horizon MPC est examinée, montrant qu’une augmentation de
cette valeur conduit à une amélioration dans la consommation grâce à l’arrêt moteur.
Une comparaison est également faite avec une méthode basée sur le PMP, implémentée
offline et qui est souvent utilisée comme solution de référence.

La stratégie de contrôle a besoin des estimations en temps réel pour le SOC et le
couple moteur, qui ne peuvent pas être toujours estimés avec précision. Par conséquent,
une analyse de robustesse par rapport à ses estimations est effectuée. Toutes les sim-
ulations ont été faites pour un dimensionnement fixe, mais il serait utile de valider la
robustesse de la stratégie de tuning par rapport à la capacité de la batterie. La pente est
un autre élément important, mais les cycles standardisés n’incluent pas cette informa-
tion. Cette thèse considère des études de cas élémentaires, avec une vitesse constante et
pente variable et le but principal est l’influence du terme de calibration. Une comparai-
son entre l’adaptation de la composante feedforward (via l’horizon pour la calibration)
et celle de feedback (via la consigne de SOC) est proposée.

1 Simulation framework

Fig. 4.1 – Simulation framework: basic representation with the 3 main components: the plant (vehi-
cle), driver and powertrain management and the controller (energy management); GB - gearbox, pwt -
powertrain

The proposed control strategy is validated in a Model-in-the-Loop environment, with a basic repre-
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sentation depicted in Fig. 4.1, with the 3 main elements: driver and powertrain management, the plant
(given by a high-fidelity model) and the energy management controller. A detailed description is given
by Fig. 4.2, whose blocks are next introduced.

A high-fidelity model designed in AMEsim, validated independently of the control law, is used to
simulate the vehicle behavior and it handles the slow and fast dynamics, as well. It provides the physical
vehicle speed vameveh , ICE and EM rotational speeds ωameice , ω

ame
em , the effective torques T ameice , T ameem and

the battery state-of-charge SOCame.
A driver model ensures the speed tracking by providing the wheel torque demand Tw and the dis-

placement of the accelerator and brake pedal. For the latter, it is assumed that the vehicle is equipped
with a brake-by-wire technology which allows the distribution between the regenerative and mechanical
braking. The rule of splitting is to use the electric machine as much as possible and dissipate the rest of
energy. Therefore, in order to calculate the brake pedal displacement, the electric machine regenerative
torque is needed. Moreover, the driver model can be disabled if coasting is active, see Fig. 3.17. As
presented in Chapter 3, coasting implies no action from the driver, no pedal being pressed and hence, the
speed tracking is deactivated.

The ICE supervisor & coordinator block handles the idle speed control and the transitions between
the engine states, in order to appropriately address its transient behavior. It can be observed that it
receives the start request, but also a manual start command (for safety reasons) that together form the
starter signal. The block provides also the indicated torque T indice , calculated as the sum between the
effective torque and the losses, which will be next used as an input in the high-fidelity vehicle model.
The indicated torque contains also information about the engine stop decision; in this case, to reflect the
fuel cut-off functioning, it takes a negative value equal to engine losses T indice = −T lossice .

The driveline requests (gear numbers Rreq1,2 and clutches request Creq1,2 ) are calculated outside the
energy management controller, in the driveline supervision and management block, which receives the
driver intention, the engine state, as well as the stop-start command. The driveline setpoints (Csp1,2, R

sp
1,2)

are calculated from these requests after taking into account the stop-start command from the MPC con-
troller and they are afterwards sent to the AMEsim model.

The energy management controller receives the current wheel torque demand and the driveline re-
quests, the current SOC and ICE torque value (for the linearization at the operating point), as well as the
number of steps after an ICE start ctON or an ICE stop ctOFF . Moreover, predictive data from naviga-
tion system are exploited over a Nλ horizon. Coasting can also be implemented, by using traffic preview
data and the anticipation of its activation influence the MPC tuning (the predicted wheel torque will be
thus set to zero).

The high-fidelity vehicle model receives the powertrain setpoints i.e. the torque references for the
components, the clutches and gear numbers references, as well as the brake pedal displacement, the
starter command and the slope from the environment, when considered. Its outputs are the physical
torque values (available at different levels; here, only the components torque are needed), the rotational
speeds, the real-time vehicle speed, the battery SOC. This allows to validate if the proposed strategy, in
spite of its simplifications, verifies the physical constraints and the speed tracking.

2 Case-study: hybrid dual-clutch transmission

One of the main contributions of the model defined in the second chapter was to cover hybrid con-
figurations with a dual-clutch transmission (DCT). Here, a case-study of a hybrid passenger car with an
EM placed at the primary shaft is considered, as in Fig. 4.3. The engine is a 1.2 L SI, whose fuel rate
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Fig. 4.2 – Validation framework - block representation; sp - setpoint, req - request, ind - indicated, acc
- accelerator; green signals: output from the high-fidelity model; red: energy management controller,
with a possible extension to coasting (dashed block); black: driver and powertrain management blocks
(Driver model, Driveline supervision & management, ICE supervisor & coordinator); bold black signals:
exogenous inputs (vehicle speed and slope)
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and its corresponding PWL approximation are depicted in Fig. 2.17.
For a better understanding of the system and of the proposed model, Table 4.1 summarizes the

clutches states with respect to potential functional modes.

Fig. 4.3 – Case-study: hybrid DCT, with EM connected to the primary shaft

Table 4.1 – Hybrid DCT functional modes; N2 = min(R2, 1)

C1 C2 N2 Case
0 0 0 standstill, sailing
0 0 1 electric driving, regenerative braking
0 1 1 hybrid or conventional, even gear engaged
0 1 0 charge during standstill
1 0 0 conventional driving, odd gear engaged
1 0 1 hybrid driving
1 1 0 take-off, charge during driving (parallel mode)

Rotational speeds expression (2.4) are validated by comparing them with the values given by a high
fidelity model (AMEsim), for several driving cycles: Artemis urban, road, highway NEDC and FTP-
75. For the latter, the 10-minute standstill part was omitted, because the thermal analysis is beyond the
scope of this work. The transient behavior of clutches having not been considered, inaccuracies appear
especially in the case of components decoupling. Thus, the comparison is made with AMEsim corrected
values (ωameICE,EM ), as in (4.1). In this way, the engine speed is instantaneously set to idle speed when
decoupled (C1 + N2C2 = 0), because no engine stop was considered in this example, and EM speed is
set to zero, when it is neither connected to the engine (C2 = 0), nor to the wheel (N2 = 0). If at least
one of the terms C2, N2 is different from zero, ωameEM value remains unchanged.

ωameICE ← max (ωameICE (C1 + C2N2) , ωidle) (4.1a)

ωameEM ← ωameEM (C2 +N2 − C2N2) (4.1b)

If the rotational speeds are directly calculated from the vehicle velocity, more than 98% of the values
present a relative error inferior to 10%, for all the considered driving cycles. However, for a predictive
control strategy, only the reference speed is available and in this case, the proposed model accuracy is
affected by the driver model. The results are summarized in Table 4.3, where the RMSE for the speed
tracking was also included. It can be seen that for all the cases the precision is superior to 85%, except
for ωEM from Artemis urban, but it corresponds to a high RMSE for vehicle speed.
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3 Simulation results

All the simulations were carried out in the Matlab/Simulink environment introduced in the beginning
of this chapter, on the DCT-based architecture from Fig. 2.5. The results are representative for a parallel
hybrid architecture, without an external charging. As mentioned in state-of-the-art of Chapter 3, the case
with a plug-in is usually handled separately and therefore, it will not be included in this simulation frame-
work. The selected drive cycles are depicted in Fig. 4.4. It should be noted that the fuel consumption of
a vehicle is usually expressed in L/100 km, commonly referred to as the normalized fuel consumption.
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Fig. 4.4 – Speed profiles for the considered drive cycles

As introduced in Chapter 3, the energy management strategy relies on a double-layer predictive
structure, with a long-term prediction horizon for tuning and a short-term for the MPC controller. In order

Table 4.2 – Percentage of points with relative error ≤ 10%, speeds calculated from vveh AMEsim

Cycle ωICE ωEM
Artemis road 98.1 91.8
Artemis urban 96.7 94.7

Artemis highway 98.8 99
FTP-75 96.7 96
NEDC 99.3 99
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to evaluate the performance of the proposed MPC-based strategy, several aspects need to be analyzed:

- the influence of the upper layer prediction horizon, used for tuning

- the influence of the MPC control horizon

- the gain due to stop-start functionality

- robustness to torque and SOC estimation

3.1 Influence of the tuning horizon

First, the influence of the upper layer horizon Nλ is addressed, for an MPC control horizon of 5s
which is long enough to include the stop-start decision. The longer the horizon, the smoother the tuning
term λ0 becomes, phenomenon depicted in Fig. 4.5, which presents the dependence of the standard
deviation as a function of Nλ for different drive cycles. Fig. 4.6 depicts the ratio between the standard
deviation and the average and it can be concluded that Artemis urban and Traffic jam are more aggressive
than NEDC and FTP-75, which have a ratio inferior to 1. The evolution of λ0 can be seen in Fig. 4.7,
whereas the SOC trajectories for these values are depicted in Fig. 4.9, together with their SOC distance-
varying limits.
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Fig. 4.5 – Standard deviation σ of the feedforward component λ0 for different tuning horizons Nλ

Table 4.3 – RMSE for vehicle speed tracking and average speed

Cycle RMSE vveh [km/h] vveh [km/h]
Artemis road 1.96 60.2
Artemis urban 2.43 17.6

Artemis highway 1.53 97.7
FTP-75 1.73 34.1
NEDC 1.36 33.6
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The consumption sensitivity with respect to Nλ is illustrated in Fig. 4.8. NEDC shows a decrease
in consumption until Nλ = 40s and then, an increase (final SOC is the same for all the cases). From
Fig. 4.9 it can be observed that the SOC trajectories for Nλ = 5s and Nλ = 10s are characterized by
large values of λ0 which favor battery charging via the ICE, but without taking advantage of this energy
buffer at a later stage. An appropriate balance is ensured byNλ = 40s, which gives the best consumption
results. For Artemis urban, Nλ = 5s gives the lowest normalized consumption, for a final SOC slightly
greater than the one for the other horizons (SOCf = 52.58% for Nλ = 5s vs SOCf = 51.15% for the
other values). FTP-75 shows an improvement up to 20s, and then a constant degradation, with a final
SOC that slightly decreases starting with Nλ. For Traffic jam, an horizon of 10s provides the lowest
consumption value, with a non-monotonic behavior for higher horizons.

These results can be interpreted through the aggressiveness analysis introduced in the previous chap-
ter, based on the wheel power periodogram. From Fig. 3.11 it is possible to extract a limit for the upper
layer horizon and its optimal value can be determined by empirically choosing the value of 0.5 for the
ratio defined by (3.48), which would reflect the trade-off between average and transient behavior. This
gives Nλ = 40s for NEDC, 5s for Artemis urban, 20s for FTP-75 and 10s for Traffic jam. The values
are therefore around 30s, which is coherent with the current availability of accurate preview data.

3.2 Influence of the MPC horizon and of S&S

The tuning analysis in the previous section was carried out for a constant MPC horizon of 5s, with
stop-start functionality included, which provided an optimal value of the upper horizonNλ for each drive
cycle. Here, for the corresponding optimal Nλ value, the control strategy performance is evaluated for
two MPC horizons Nmpc = 1s and Nmpc = 5s, as well as two cases: with and without MPC-based
S&S, respectively. A greater value for Nmpc would not be suitable due to the uncertainties resulting
from model linearization, but also from wheel torque prediction: it is assumed that the vehicle speed,
and therefore the wheel torque, are known for a given horizon, but the simulations being carried out with
a driver in the loop, the future wheel torque cannot be perfectly predicted.

For this problem, the prediction and the control horizon are considered equal Np = Nc = Nmpc.
The cost of a restart was set to tidle = 2s and for all scenarios the engine is stopped for sequences
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of standstill or regenerative braking that last at least 2s. It is reminded that the preview information is
considered available for an horizon of length Nλ (used for tuning), but the MPC controller uses only an
horizon of Nmpc ≤ Nλ.

From Table 4.4, where results are summarized, it can be concluded that a longer prediction horizon
brings an improvement due to the engine stop decision. Indeed, the difference in consumption between
the two values of Nmpc is virtually absent when the MPC-based engine stop is not considered. A longer
Nmpc may improve the results if state constraints are active, but for the SOC this is the case only toward
the end of the drive cycle, when the variation range becomes narrow.

Table 4.4 – Fuel consumption [L/100km] and final SOC[%] with MPC strategy

Strategy MPC MPC with S&S
PPPPPPPPPCycle

Nmpc 1s 5s 1s 5s Relative gain

NEDC
4.97 4.96 4.89 4.76

2.9%
(70.03%) (70.04%) (70.03%) (70.57%)

Artemis urban
6.77 6.76 6.33 6.11

3.45%
(52.88%) (52.76%) (53.33%) (52.58%)

FTP-75
5.06 5.06 4.93 4.82

2.23%
(55.52%) (55.4%) (55.53%) (55.16%)

Traffic jam
7.65 7.63 7.03 6.16

12.37%
(50.12%) (50.32%) (50.01%) (50.32%)

The parameters that interfere in the model-based stop decision (3.54) areNstop = 4 (the optimization
sampling time is ∆topt = 0.5s), T thrice = 5Nm and Nstart = 4. An horizon of 5s is therefore long enough
to include the engine stop. Intermediate values between 1s and 5s could have been tested as well, but the
purpose of the study was to emphasize the benefit of engine stop, by using the longest possible accurate
prediction.

The SOC trajectory, the engine speed and torque are compared for the two horizons in Fig. 4.10,
4.11, 4.12, 4.13 for NEDC, Artemis urban, FTP-75 and Traffic jam, respectively. It can be observed that
the SOC trajectories are similar for the two Nmpc values, except for Traffic jam, where after almost 100s
the SOC value drops for Nmpc = 1s and afterwards, the trajectories have a similar behavior. This is
due to a problem of speed following for Nmpc = 1s that corresponds to a more important compensation
demanded by the speed regulator and hence, a more important battery use.

Another observation that can be made about the influence of S&S is that a fuel gain already appears
for Nmpc = 1s, even if it is less than the cost of a restart. This is due to the fact that once the engine
is stopped (due to a regenerative braking or vehicle standstill) the strategy maintains the engine in the
current state if the first command is inferior to the torque threshold value T thrice , as depicted in Fig. 3.15.
For a better understanding, Fig. 4.14 and 4.15 present the influence of MPC-based S&S for Nmpc = 1s,
for sections of NEDC and Artemis urban. It can be noticed that for NEDC, around t = 160s the vehicle
is braking (the engine is in fuel cut-off) and afterwards is stabilizing at constant low-speed.

The model-based S&S allows the engine to be stopped during this constant speed phase, improving
thus the fuel gain. For Artemis urban (Fig. 4.15) the engine is kept shut off for low speed phases: around
t = 500s, after a standstill phase and around t = 800s after braking, for instance.

In Chapter 3 it was mentioned that penalties on torque variations are introduced for those sequences
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Fig. 4.16 – Traffic jam; influence of penalties on torque variations, as in (3.57)

for which the first consumption approximation region was assigned, as in (3.57). The purpose is to force
all the sequence either toward zero, or toward higher torque values. Here, R∆k

(i, i) = 2 was empirically
chosen and found to provide good results, for each i that verifies the conditions from (3.57). In Fig.
4.16 the two cases (absence and presence of torque penalties) are confronted for Traffic jam, where an
improvement in the engine stop decision can be observed especially at the beginning of the drive cycle.
The fuel gain due to these penalties is of almost 1.5%: 6.25 L/100 km vs 6.16 L/100 km for an almost
identical final SOC.

3.3 Comparison with offline method PMP

A comparison with a PMP - based method, as defined in (3.7), is summarized in Table 4.5, where for
the MPC strategy theNλ with the best consumption was retained. For the PMP -based method a constant
equivalence factor was determined offline for each drive cycle such that the final SOC is identical to the
one from the MPC trajectory, in order to make a fair comparison between the two strategies. At a first
stage, PMP provides a torque distribution without considering the engine stop. From the ICE torque
command, a stop signal is subsequently generated offline, for sequences of at least 2 seconds of zero
torque. A new simulation is performed, with this ICE stop signal incorporated. The evolution of the
SOC, engine speed and torque, as well as of the electric machine torque are compared in Fig. 4.17, 4.18,
4.19, 4.20 for the 4 considered drive cycles.

For NEDC, the main differences are observed for the extra-urban part, after t = 800s. The PMP -
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Table 4.5 – Fuel consumption [L/100km] and final SOC[%], PMP and MPC with Nmpc = 5s

XXXXXXXXXXXCycle
Strategy

PMP MPC Relative difference

NEDC
4.5 4.76

5.77%
(70.26%) (70.57%)

Artemis urban
5.61 6.11

8.9%
(52.76%) (52.58%)

FTP-75
4.5 4.82

7.11%
(55.74%) (55.16%)

Traffic jam
5.55 6.16

11%
(50.12%) (50.32%)

based method provides a very aggressive torque around 850s and 1000s, time slots that correspond to
constant speed of 70 km/h, where the optimal command is ON/OFF. Around 900s, PMP stops the engine,
whereas MPC displaces the engine operating point and it provides a greater torque than necessary, the
extra torque being used to charge the battery, which explains the difference in the SOC evolution for the
2 strategies. The MPC behavior is due to the choice of the cost function (3.20) that shifts the electro-
chemical power before using its square value. For cruising phases, this displacement term induces the
tendency to charge the battery via the engine, rather than pure electric driving. This strategy is beneficial
if torque assist is needed later, because it ensures an energy buffer. For NEDC, this advantage is less
exploited, because toward the end of the drive cycle, there is an important phase of regenerative braking,
the battery being therefore replenished. The relative difference between the 2 methods is however less
than 6% for this drive cycle. More important deviations are noticed for urban profiles.

Table 4.6 contains the standard deviation for the engine torque σ(Tice) and the ratio between the
standard deviation and the average. MPC provides a smoother torque and this is mainly due to the
quadratic formulation.

Table 4.6 – Standard deviation σ and ratio between standard deviation and the average of Tice; compari-
son between PMP and MPC

XXXXXXXXXXXCycle
Strategy σ(Tice) σ(Tice)/avg(Tice)

PMP MPC PMP MPC
NEDC 30.13 23.97 1.67 1.24

Artemis urban 31.66 28.27 2.4 2.01
FTP-75 35.06 28.02 1.8 1.44

Traffic jam 19.02 17.48 2.88 2.45
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4 Robustness analysis

The MPC controller, as shown in Fig. 3.14, receives at each optimization step the estimated engine
torque Tice and the battery SOC from the vehicle high-fidelity model. The former is used in the model
linearization at the operating point and the latter represent the current state which interferes in the cal-
culation of the model parameters (OCV and R in (1.11)) and also in the feedback correction term of
the penalty factor. The technical specifications state that the SOC can be estimated with a precision of
±1% of its value, whereas for the torque, the estimation accuracy is of ±5%. Five scenarios that will
be next introduced, are evaluated on each drive cycle. The results are summarized in Table 4.7 for two
different Nλ values for each drive cycle and a comparison is made with the baseline strategy, where no
disturbances are present on the measurements.

The robustness scenarios are:

1. positive offset for Tice, accurate SOC

2. negative offset for Tice, accurate SOC

3. signed offset for Tice, but with a random distribution, accurate SOC

4. random offset of ±1% of its current value for SOC, accurate Tice

5. random offsets on both inputs

Table 4.7 – Fuel consumption [L/100km] and final SOC[%], 5 scenarios for robustness for 2 values of
the tuning horizon Nλ

PPPPPPPPPCycle
Case

Baseline 1 2 3 4 5

NEDC
20s

4.87 4.875 4.81 4.86 4.85 4.85
(70.57%) (70.57%) (70.57%) (70.57%) (70.33%) (70.32%)

40s
4.76 4.78 4.75 4.77 4.76 4.77

(70.57%) (70.57%) (70.57%) (70.57%) (70.33%) (70.32%)

Artemis urban
5s

6.11 6.115 6.113 6.11 6.11 6.11
(52.58%) (52.58%) (52.54%) (52.68%) (52.26%) (52.28%)

10s
6.14 6.15 6.07 6.12 6.25 6.22

(51.15%) (51.15%) (51.16%) (51.16%) (50.62%) (51.04%)

FTP-75
10s

4.82 4.82 4.82 4.82 4.81 4.82
(57.07%) (57.1%) (57.1%) (57.06%) (56.88%) (57%)

20s
4.82 4.83 4.81 4.83 4.85 4.83

(55.16%) (54.91%) (55%) (55.04%) (55.9%) (55.88%)

Traffic jam
10s

6.16 6.2 6.17 6.16 6.2 6.21
(50.32%) (50.33%) (50.32%) (50.32%) (50.52%) (50.52%)

20s
6.48 6.58 6.5 6.51 6.52 6.54

(50.28%) (50.29%) (50.28%) (50.29%) (50.53%) (50.56%)

The fuel consumption degradation is less than 2% for the considered scenarios, which is a good
performance. It can be noticed that the first scenario, with a positive offset for the engine torque, shows
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a more important increase in consumption, whereas the second (negative offset) may lead to a decrease,
as it is the case for Artemis urban. This is due to the impact on the stop decision, which may be favored
by the latter. Disturbances on SOC have a stronger impact on trajectories where the constraints are
active: Artemis urban, Nλ = 10s and FTP-75, Nλ = 20s, as it is depicted in Fig. 4.21. For Artemis
urban, the lower constraints are activated during a proportionally longer amount of time than for FTP-75,
which explains the difference in the consumption degradation. It can be noticed that SOC limitations are
sometimes violated, but this is due to the use of slack variables, as in (3.38d).

For a better visualization, Fig. 4.22 depicts the trajectories for SOC, engine speed and torque for all
the considered scenarios, for Artemis urban with Nλ = 10s. The differences between real values and
disturbed measurements of torque and SOC are presented in Fig. 4.23.

In addition to the robustness analysis with respect to measurements, tuning sensitivity to the battery
capacity is another robustness indicator of the proposed strategy. The tuning mechanism introduced
in the previous chapter has a generalized expression and the choice of the tuning horizon Nλ depends
exclusively on the drive cycle. For the present analysis, a battery with a capacity twice the size of the
baseline case is considered and simulations were carried out for representative values of Nλ for each
drive cycle. Consumption results and their sensitivity to tuning is depicted in Fig. 4.24, where it can be
observed that the optimal Nλ is the same as for the baseline case (40s for NEDC, 5s for Artemis urban,
20s for FTP-75 and 10s for Traffic jam), which proves the robustness with respect to the battery size.
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5 Slope influence

Standard drive cycles do not provide any information about the slope, but its influence cannot be
neglected. Here, two basic speed profiles with variable slope were selected, depicted in Fig. 4.25, for
which two approaches are compared:

1. the use of a longer prediction horizon for tuning

2. the adaptation of the SOCsp, as announced in the previous chapter and depicted in Fig. 3.12
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Fig. 4.25 – Speed profiles (blue) and slope (red) of basic case-studies

First, simulations are presented for case study (1), with a constant SOC setpoint SOCsp = 50%,
which interferes in the feedback calculation (see (3.42)) and with distance-varying SOC limits (3.37),
for different tuning horizons Nλ. The results are depicted in Fig. 4.26, where it can be seen that the
SOC constraints activate early and therefore, it would be interesting to see the consumption evolution for
a constant minimum value of SOC, SOCmin = 20%, even though the final SOC will not be the same.
The results with a constant SOCmin will be compared with the case where an adaptation of SOCsp is
introduced. For the considered case-study, with a positive slope of 5%, followed by a negative one, it may
be more appropriate to diminish the SOCsp before the start of the negative slope phase, in anticipation
to the energy recovery. Therefore, the last tested scenario is defined by a constant SOCmin value and a
variable SOC setpoint: SOCsp = 30% during the first part and then, SOCsp = 50%.

The consumption results are summarized in table 4.8 for different Nλ. There is a saturation in
consumption improvement toward Nλ = 90s for all the scenarios, but present to a lesser extent for
the second case, defined by constant SOCmin and SOCsp. The absence of an identical final SOC
makes a comparison between the performances associated to different Nλ relatively difficult, except
when distance-varying limits are used: Nλ = 60s and Nλ = 90s outperform Nλ = 30s, which is
coherent with the periodogram-based analysis from Fig. 3.13. It must be mentioned that for Nλ = 10s
the final SOC is not the same as for the other values because upper distance-varying SOC limits are not
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Fig. 4.26 – Case-study (1), SOC distance-varying limits, constant SOCsp

activated during regenerative braking. At the beginning of the braking phase the SOC is greater than for
the other Nλ values, which explains the difference in the final SOC.

Table 4.8 – Fuel consumption [L/100km] and final SOC[%], case study (1)

PPPPPPPPPScenario
Nλ 10s 30s 60s 90s

Constant SOCsp, 4.49 4.2 4.07 4.08
Distance-varying SOC limits (67.81%) (53.05%) (53.1%) (53.1%)

Constant SOCsp 4.49 4.19 3.86 3.8
Constant SOCmin (67.81%) (52.73%) (45.68%) (45.62%)
Variable SOCsp 4.09 4.01 3.82 3.82

Constant SOCmin (55.03%) (48.37%) (45.64%) (45.64%)

Table 4.9 – Fuel consumption [L/100km] and final SOC[%], case study (2)

PPPPPPPPPScenario
Nλ 10s 30s 60s 90s

Constant SOCsp 4.58 4.21 3.75 3.66
Constant SOCmin (60.13%) (46.04%) (39.64%) (39.64%)
Variable SOCsp 4.55 4.09 3.89 3.81

Constant SOCmin (51.38%) (41.52%) (39.6%) (39.61%)
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6 Conclusions

An adaptation of the SOCsp can lead to a consumption improvement for low values ofNλ: Nλ = 10s
for the third scenario outperforms the constant SOCsp case with Nλ = 30s. The SOC trajectories for
these two scenarios are depicted in Fig. 4.27, where it can be observed a faster battery depletion for the
case with SOCsp = 30%. For higher Nλ values the two scenarios behave similarly i.e. it is enough
to use a longer tuning horizon to improve the consumption, instead of introducing an additional tuning
parameter (SOCsp). This conclusion is also valid for the second case-study, with a lower speed, whose
results are summarized in Table 4.9. Here, for Nλ = 60s an adapted SOCsp provides better results than
a constant setpoint, but a greater Nλ ensures a better fuel gain improvement for the case with a constant
setpoint. This result reinforces the choice of adapting the tuning horizon, rather than the SOCsp.
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Fig. 4.27 – Case-study (1), SOC trajectories for different Nλ values; constant and variable SOCsp,
respectively; constant SOCmin

6 Conclusions

This chapter presented a series of case-studies considered to be representative for the overall test
campaign. The results validated the proposed powertrain control-oriented model and evaluated the MPC
performance for a parallel hybrid passenger car with fixed sizing, for different driving scenarios and
tuning parameters. The influence of the tuning prediction horizon was explained through the mechanism
proposed in chapter 3, based on the frequency analysis. One of the conclusion is that in the nominal case,
the benefit in fuel gain of increasing the MPC horizon is due to S&S functionality. The robustness of the
controller was proven with respect to disturbances on torque and SOC, but also with respect to the battery
size, which was varied only in view of a sensitivity analysis, and not for sizing optimization. An analysis
of the slope influence completes the evaluation and it is concluded that it is preferable to adapt the tuning
horizon (and hence, the feedforward component of the tuning factor) rather than the SOC setpoint that
interferes in the feedback term.
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Ce chapitre a présenté une série d’études de cas, considérées comme représentatives. Les résultats
ont validé le modèle de GMP orienté-contrôle et évalué la performance MPC pour un hybride parallèle,
avec un dimensionnement fixe, pour des différents scénarios de conduite et des paramètres de calibration.
L’influence de l’horizon de prédiction a été expliquée à travers le mécanisme proposé dans la chapitre 3,
basé sur une analyse fréquentielle. Une des conclusions est que dans le cas nominal, le bénéfice en termes
de gain en consommation d’augmenter l’horizon MPC est dû à la fonctionnalité stop-start. La robustesse
du contrôleur a été prouvée par rapport aux perturbations sur le couple et le SOC, mais aussi à la capacité
de la batterie, qui a été faite varier uniquement en vue d’une analyse de sensibilité et non pas pour une
optimisation du dimensionnement. Une analyse de l’influence de la pente a complété l’évaluation et on
a conclu que c’est préférable d’adapter l’horizon de calibration (et par conséquent, la partie feedforward
du terme de calibration) plutôt que la référence de SOC qui intervient dans la partie feedback.
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The present research started from the acknowledgment that in the current context of restrictive envi-
ronmental legislation, hybrid electric vehicles offer an alternative to conventional transportation systems.
Although sometimes regarded as a transient solution toward all-electric vehicles, HEV gradually started
to position themselves as a standalone actor on the automotive market. This justifies the abundance of
research work that covers a wide range of topics, from design to control, but concomitantly nourish the
academic investigations on switched systems, hybrid control or decision making in the activation of dif-
ferent strategies. The main advantage of hybridization being the reduction of CO2 emissions, this thesis
focused on the energy management in view of fuel consumption reduction. Traffic forecast is nowadays
made possible by improved technologies, encouraging therefore the use of predictive control algorithms,
with a model-based approach. Flexibility, robustness and reduced complexity of implementation are
common requirements in automotive industry and for the considered problem, model-based strategies
offer the best compromise, in comparison with heuristic or data-based approaches. Our work fits within
this framework and its main goal was to exploit the potential of model predictive control for the torque
distribution problem.

The first achievement was the establishment of a control-oriented powertrain model, regardless of
the configuration. The wheel level, which is the uppermost powertrain position was chosen as the level
for the problem formulation, because it includes complete information about the system i.e. transmission
type and electric machine placement. For a complete description, intermediate levels were also defined
(crankshaft, gearbox primary and secondary shaft). The model was parametrized with the help of two
clutches and this allowed to include the case of dual-clutch transmissions, which are often neglected in
the literature, as well as to define different architectures: in particular, it makes a distinction between
series and parallel hybrid architectures, but it can also handle, to a certain extent, multi-mode power-split
architectures. For the latter, due to their complexity, an additional degree of freedom is usually needed
and the proposed model was extended for some specific case-studies, encountered on the market. To
sum up, a compact static model was designed, that defined the torque at different levels and the speeds of
traction elements (combustion engine and electric machines) and which covered a large class of hybrid
architectures. The dynamical part of the model was linked to the battery SOC, for which a standard,
internal resistance model was used. As an improvement of the static model, which can be considered
for further studies, would be to introduce an additional clutch, in order to handle in a generalized form
multi-mode configurations.

The reduction of fuel consumption being the main goal of this thesis, a tool for its evaluation was
needed. In general, it is modeled as a lookup table in engine torque and speed, but in a model-based
framework, an analytical formulation is preferred. The high level of complexity of physical models,
characterized by fast dynamics, makes them unsuitable for a supervisory controller. In general, an ap-
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proximation of the static model is instead used and the most encountered model in the literature is Willans
line. However, a linear expression is not always accurate, especially for turbocharged SI engines. There-
fore, a generalization of this model was proposed and the fuel consumption was expressed as piecewise
linear in torque, with speed-dependent coefficients. This approximation can be applied to all types of
engines, the distinguishing element being the number of torque partitions. The advantage of this model
is therefore its general application and its improved accuracy.

The energy management formulation in the MPC framework was the central part of this thesis and
represented the main contribution from the design point of view. For the cost function definition, an
energetic criterion was proposed, expressed as a trade-off between the fuel and the electrochemical con-
sumption, placing the problem into an economic MPC framework. The linearized SOC model at the
operating point, along with the PWL consumption model define an LTV MPC problem, which was for-
mulated in a standard quadratic form, allowing therefore an efficient implementation. Noteworthy, in
addition to the torque split, the MPC formulation can also handle the engine stop-start, but without the
use of a discrete optimization variable (engine ON/OFF), nor the introduction of a cost of a restart, which
represents one of the main advantages as it emerges from the exhaustive studies conducted in the present.
The engine stop was implemented as an a-posteriori decision from the sequence of optimal commands
given by the MPC.

The model-in-the-loop validation showed on one side the versatility of the model-based design and
the optimization-based implementation of the energy management, which often appeals to rule-based
techniques. From a fuel consumption reduction point of view, it was shown that the benefit of prediction
in the MPC framework is almost exclusively related to S&S functionality, as long as hard constraints
activation is avoided. This phenomenon resides in the fact that the cost function was not expressed in a
standard form i.e. a trade-off between tracking error and effort reduction, but as an energetic criterion,
and that state constraints are only active a proportionally small amount of time, at the end of the drive
cycle. If the main advantage of the MPC design is the versatility and relative robustness with respect to
the changes in the scenarios, the disadvantage resides in the inaccuracies due to linearization and driver
request prediction, both limiting the MPC prediction horizon to only several seconds. A nonlinear pre-
diction model could be the object of a future work for accuracy enhancement, but in this case the MPC
problem would need a more complicated solver. Concerning the driver request, there is a significant
potential of improvement in the current context of connected cars.

The tuning of the MPC criterion represents a longstanding subject in the finite-time optimal control
studies and it represented, also, an important part of the present thesis. Speed and wheel torque preview
were exploited in the calculation of the feedforward component, over a longer horizon than the one used
in the MPC algorithm. This was justified by its average-based definition, which can filter inaccuracies
in the prediction. Simulations results showed that the optimal value of the prediction horizon used for
tuning is drive cycle-dependent, which was explained on the basis of a frequency analysis that gives
information about the trade-off between tendency and aggressiveness. In real driving situations it is not
possible to have access to the entire speed profile and this constraint will limit the range of the analysis
and consequently, the optimal adaptation of the prediction horizon. However from the present study, we
concluded that for drive cycles with urban characteristics, an horizon of 10s is a suitable choice. The
main advantage is therefore the inclusion of a self-tuning mechanism, by automatically exploiting drive
cycle and powertrain-related data.
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If hybridization can only ensure a limited fuel gain for road and highway speed profiles, coasting
(otherwise known as free-wheeling) emerges as a potential solution for fuel reduction in extra-urban
scenarios, in particular in view of the next generations of autonomous driving. Therefore, in addition
to torque split and stop-start problem, coasting was another topic addressed in a predictive framework.
Coasting was proven to be more fuel efficient that energy recovery, result that supports the state-of-the-
art analysis for HEV. The novelty of the proposed solution was to address it in an optimization-based
approach i.e. to evaluate a cost function and to subsequently decide the initiation and duration of coast-
ing, as well as the acceptance of the result, in terms of speed deviation. This approach presents several
advantages: adaptability with respect to vehicle parameters, it avoids high compensations from the speed
regulator at pedal pressing and it can be applied to time-varying speed sections. The main drawback
is the variable-structure form: the vehicle speed during free-wheeling can only be evaluated for a pair
“coasting start-coasting stop” time, which are to be determined. Moreover, the reference speed does not
have a parametrized expression, it is only provided as a time series, leading to a pointwise evaluation of
the cost function, which can be computationally complex. As a perspective, a functionality that handles
position-related obstacles may be introduced.

Vehicle speed tracking was supposed handled at a supervisory level, by a virtual driver. An extension
of this work might be the co-optimization of the speed and torque split, in a predictive eco-driving
framework. Moreover, information about the drive cycle was supposed known in advance for a certain
time window, without the inclusion of a mechanism of speed prediction, such as reconstruction from the
leading vehicle speed or from driver’s past information. The MPC cost function could be modified in
order to cope with different data reliability or with multiple scenarios, enhancing therefore the strategy
robustness. Another direction of improvement could be the prediction model, which might include the
battery aging. Concerning the validation, a MIL environment was used, but a hardware-in-the-loop
validation would complete the evaluation of the proposed strategy.
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Le travail de recherche courant a démarré de l’acquiescement que dans le contexte actuel d’une
législation environnementale restrictive, les véhicules hybrides offrent une alternative aux systèmes de
transportation conventionnels. En dépit d’être perçus comme une solution transitoire vers les véhicules
purement électriques, HEV ont graduellement commencé à se positionner sur le marché d’automobile
comme un acteur indépendant. Ceci justifie le travail de recherche abondant qui couvre une large gamme
de sujets, du design au contrôle, en nourrissant les investigations académiques sur les systèmes hybrides
ou la prise de décision dans l’activation des différentes stratégies. L’avantage principal de l’hybridation
étant la réduction des émissions CO2, cette thèse s’est concentrée sur la gestion d’énergie en vue de
réduire la consommation. La prédiction du trafic est maintenant rendue possible par l’avancement
de la technologie, encourageant donc l’utilisation des algorithmes de contrôle prédictif, avec une ap-
proche basée modèle. Flexibilité, robustesse et complexité d’implémentation réduite sont les exigences
courantes dans l’industrie de l’automobile et pour le problème considéré, les stratégies basées modèles
offrent le meilleur compromis, comparé aux approches heuristiques ou date-based. Ce travail s’inscrit
dans ce cadre et son but principal était d’exploiter le potentiel du MPC pour le problème de la distribution
de couple.

Le premier résultat a été la définition d’un modèle GMP orienté-contrôle, indépendant de la config-
uration. Le problème a été formulé au niveau le plus haut, la roue, parce qu’il contient des informations
complètes sur le type de transmission et la position de la machine électrique. Pour une description com-
plète, des niveaux intermédiaires ont également été définis (vilebrequin, l’arbre primaire et secondaire
de la boîte). Le modèle a été paramétrisé à l’aide de deux embrayages, ce qui a permis l’introduction des
transmissions double-embrayage, qui sont souvent négligées dans la littérature, ainsi que la définition
de différentes architectures: en particulier, il distingue l’architecture série de celle parallèle, mais il peut
aussi gérer certains cas d’architectures multi-modes à puissance dérivée. Pour celles-ci, en raison de
leur complexité, un dégrée de liberté supplémentaire est nécessaire en général et le modèle proposé a
été étendu pour des études de cas spécifiques, présents sur le marché. Pour résumer, un modèle statique
compact a été conçu, qui a défini le couple aux différents niveaux et les vitesses des éléments de traction
(moteur et machines électriques) et qui a couvert une large classe des architectures hybrides. La partie
dynamique du modèle était liée à l’état de charge de la batterie, pour laquelle un modèle standard, à ré-
sistance interne a été utilisé. Une amélioration du modèle statique, qui pourrait être considérée pour des
études futures, serait l’introduction d’un nouvel embrayage, afin d’adresser sous une forme généralisée
les configurations multi-modes.

La réduction de la consommation étant le but principal de cette thèse, un outil pour son évaluation
était nécessaire. En général, elle est modélisée comme une cartographie en couple moteur et régime,
mais dans le cadre d’une approche basée modèle, une formulation analytique est préférée. Le niveau
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élevé de complexité des modèles physiques, caractérisés par des dynamiques rapides, les rend inutil-
isables pour un contrôleur au niveau superviseur. En général, une approximation du modèle statique
est utilisée et le modèle le plus répandu dans la littérature est Willans line. Cependant, une expres-
sion linéaire n’est pas toujours précise, particulièrement pour des moteurs essence turbochargés. Par
conséquent, une généralisation de ce modèle a été proposée, la consommation carburant étant exprimée
comme linéaire par morceaux en couple, avec les coefficients dépendants du régime. Cette approxi-
mation peut être appliquée à tout type de moteur, l’élément discriminatoire étant le nombre de partitions
de couple. En conclusion, l’avantage de ce modèle est son application générale et sa précision améliorée.

La formulation de la gestion d’énergie avec le MPC a été la partie centrale de cette thèse et elle a
représenté la contribution principale d’une perspective design. Pour la définition de la fonction coût,
un critère énergétique a été proposée, exprimé comme un compromis entre la consommation carbu-
rant et électrochimique, plaÃğant le problème dans un cadre de MPC économique. Le modèle de SOC
linéarisé autour du point de fonctionnement, ainsi que le modèle de consommation linéaire par morceaux
définissent un problème LTV MPC, qui a été formulé sous une forme quadratique standard, permettant
de cette manière une implémentation efficace. Il convient de mentionner que la formulation MPC peut
également adresser le stop-start, mais en absence de l’introduction d’une variable d’optimisation discrète
(moteur ON/OFF) ou d’un coût de démarrage moteur, ce qui représente un des avantages principaux de
l’approche proposée, par rapport aux études actuellement présentes dans la littérature. L’arrêt moteur a
été implémenté comme une décision a-posteriori issue de la séquence de commandes optimales fournie
par le MPC.

La validation model-in-the-loop a montré la versatilité du design model-based et de l’implémentation
basée-optimisation de la gestion d’énergie, qui utilise le plus souvent des techniques heuristiques. Con-
cernant le gain en consommation, il a été montré que le bénéfice de la prédiction pour le MPC est presque
exclusivement lié à la fonctionnalité S&S, pourvu que l’activation des contraintes hard soit évitée. Ce
phénomène réside dans le fait que la fonction coût n’a pas été exprimée sous une forme classique, à
savoir comme un compromis entre la réduction de l’erreur de suivie et de l’effort, mais comme un critère
énergétique et que les contraintes sur l’état sont actives seulement pendant une relativement courte péri-
ode de temps, à la fin du cycle de conduite. Si l’avantage principale du design MPC est la versatilité et
la relative robustesse par rapport aux changements dans les scénarios, le désavantage est lié aux impré-
cisions dues à la linéarisation et à la prédiction de la demande du conducteur, les deux limitant l’horizon
de prédiction du MPC à seulement quelques secondes. Un modèle de prédiction nonlinéaire pourrait
représenter l’objet d’un travail future pour l’amélioration de la précision, mais dans ce cas le problème
MPC nécessiterait un solveur plus compliqué. Concernant la demande conducteur, aujourd’hui il y a un
signifiant potentiel d’amélioration dans le contexte des voitures connectées.

Le tuning du critère MPC représente un sujet à long terme dans le contrôle optimale à horizon fini et
une partie importante de cette thèse lui est dédiée. Les futures vitesse et couple à la roue ont été exploités
dans le calcul de la partie feedforward, sur un horizon plus large que celui employé pour l’algorithme
MPC. Ceci a été justifié par sa définition comme une moyenne, ce qui permet de filtrer les imprécisions
de la prédiction. Les résultats des simulations ont montré que la valeur optimale de l’horizon de pré-
diction utilisé pour le tuning dépend du cycle de conduite, ce qui a été expliqué à travers une analyse
fréquentielle qui offre des informations sur le compromis tendance/agressivité. Dans des conditions de
conduite réelle ce n’est pas possible d’avoir accès au profil de vitesse entier et cette contrainte limite
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l’intervalle d’analyse et par conséquent, l’adaptation optimale de l’horizon de prédiction. Cependant,
pour l’étude présente, c’était conclu que pour des cycles avec une caractéristique urbaine, un horizon de
10s est un choix approprié. L’avantage principale est donc l’inclusion d’un mécanisme d’auto-tuning,
via l’exploitation automatique des données liées au cycle et au GMP.

Si l’hybridation ne peut assurer qu’un gain en consommation limité pour des profils routier et au-
toroutier, coasting (autrement connu sous le nom free-wheeling apparaît comme une solution potentielle
pour la réduction de la consommation pour des scénarios extra-urbains, particulièrement en vue de la
prochaine génération de conduite autonome. En plus par rapport à la distribution du couple et le stop-
start, coasting a été un autre sujet adressé dans un cadre prédictif. Coasting s’est montré plus efficace pour
la réduction carburant que la récupération d’énergie, ce résultat appuyant les travaux déjà existants pour
les HEV. La nouveauté de la solution proposée a été d’adresser ce problème avec une approche basée sur
optimisation i.e. évaluer une fonction coût et décider ensuite l’initiation et la durée du coasting, ainsi que
l’acceptabilité du résultat, en termes de déviation de vitesse. Cette approche présente plusieurs avantages
: adaptabilité par rapport aux paramètres véhicule, éviter des compensations importantes du régulateur
de vitesse lors de l’appui pédale et application sur des sections de vitesse variante dans le temps. Le
désavantage principal est sa forme avec une structure variable : la vitesse véhicule pendant le roulage
libre peut seulement être évaluée pour une paire coasting start - coasting stop, des instants qui doivent
être déterminés. En outre, la référence de vitesse n’a pas une expression paramétrisée, elle est fournie en
tant que série de temps, conduisant à une évaluation à chaque point de la fonction coût, ce qui peut être
complexe d’un point de vue calcul. Une perspective serait d’introduire une fonctionnalité qui gère des
obstacles dépendants de la position.

Le suivi de vitesse a été supposé traité au niveau superviseur, par un conducteur virtuel. Une exten-
sion de ce travail pourrait être la co-optimisation de la vitesse et du partage du couple, dans un cadre
d’éco-conduite prédictive. De plus, des informations sur le cycle ont été supposées connues à l’avance
pour un certain intervalle, mais sans l’inclusion d’un mécanisme de prédiction de vitesse, comme la re-
construction à partir de la vitesse véhicule devant ou à partir des informations passées du conducteur. La
fonction coût du MPC pourrait être modifiée afin de gérer les différents dégrées de confiances des don-
nées ou les scénarios multiples, renforçant de cette manière la robustesse de la stratégie. Une autre di-
rection d’amélioration serait le modèle de prédiction, qui pourrait inclure le vieillissement de la batterie.
Concernant la validation, un environnement MIL a été utilisé, mais une validation hardware-in-the-loop
compléterait l’évaluation de la stratégie proposée.
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Nicoleta STROE

Contributions à la commande prédictive pour la gestion d’énergie d’un véhicule hybride
électrique

Résumé : Pour un véhicule électrique hybride, un des challenges les plus compliqués d’une per-
spective orientée contrôle est la distribution de puissance entre le moteur thermique et les machines
électriques, problème appelé gestion d’énergie. La question qui surgit est comment exploiter le degré
de liberté supplémentaire - la voie électrique - afin que la performance véhicule, liée à la réduction
de la consommation carburant, soit améliorée. Le besoin de robustesse des stratégies de contrôle
encourage le choix de méthodes basées sur des modèles et dans le contexte actuel de possibilité
d’acquisition des données télémétriques, la commande prédictive à base de modèle apparaît comme
une option attractive, motivée aussi par sa capacité à gérer des contraintes. La plupart des stratégies
courantes de gestion d’énergie sont orientées application et par conséquent, un modèle générique
du GMP hybride offrirait plus de flexibilité. Cette thèse se construit sur deux axes principaux :
la synthèse d’un modèle générique et d’une stratégie de contrôle basée sur la commande prédic-
tive pour la gestion d’énergie, avec un mécanisme de calibration auto-adaptable. Si la distribution
de couple est l’enjeu majeur du contrôle, d’autres fonctionnalités peuvent être introduites, comme
l’arrêt/démarrage du moteur et le découplage du GMP des roues. Cette dernière est généralement
traitée dans la littérature avec une stratégie basée sur cartographies, mais ici une approche analy-
tique innovante a été proposée. Une validation sur un modèle haute-fidélité d’un véhicule hybride
léger (mild) avec une transmission double-embrayage clôture les travaux et montre le potentiel de la
stratégie proposée.
Mots clés : véhicule hybride, commande prédictive, gestion d’énergie

Contributions to model-based predictive energy management in hybrid electric vehicles

Abstract: For a hybrid electric vehicle, one of the most challenging aspects from a control perspec-
tive is the power split between the engine and the motors, problem referred to as energy manage-
ment. The question that arises is how to exploit the additional degree of freedom - the electric path
- such that the vehicle performance related to consumption is improved. The required robustness
for the control strategies encourage the choice of model-based methods and in the present context of
telemetry data acquisition, model predictive control emerges as an attractive option, motivated in ad-
dition by its ability to handle the constraints. Most of the current energy management strategies are
application-oriented and therefore, a generic hybrid powertrain model would provide more flexibil-
ity. This thesis is developed on two main axes: the synthesis of a generic model and of a MPC-based
control strategy for the energy management, with a self-tuning mechanism. If the torque split is
the main control objective, other functionalities can be introduced, such as engine stop/start and
coasting. The latter is usually handled in the literature with a map-based strategy, but here an ana-
lytical solution was proposed. A validation on a vehicle high-fidelity model for a mild hybrid with a
dual-clutch transmission closes the work and shows the potential of the proposed strategy.
Keywords: hybrid electric vehicles, model predictive control, energy management
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